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Preface 

This book offers an introduction to the use of matrix theory and linear 
algebra in modeling the dynamics of biological populations. Matrix al­
gebra has been used in population dynamics since the seminal work of 
H. Bernardelli [8], E. G. Lewis [103], and P. H. Leslie [100], [101] in the 
1940s. Particularly influential was Leslie's work on the dynamics of pop­
ulations structured by age categories. Later, in 1965, L. P. Lefkovitch 
demonstrated how the methodology can be applied to populations struc­
tured by other means as well, such as body size or weight, life cycle 
stages, disease states, spatial location, and/or any number of physiolog­
ical and behavioral characteristics [99]. Today matrix models continue 
to play an expanding major role in theoretical and applied population 
dynamics [13], [14], [15], [28], [106]. 

The book does not serve as a broad introduction to the subject of 
structured population dynamics. That would entail covering a large vari­
ety of other types of mathematical equations, including partial differen­
tial equations, delay or functional differential equations, integral equa­
tions, and integro-differential equations [9], [10], [12], [28], [55], [83], 
[84], [94], [105], [109], [110], [122], [130], [133], and require more math­
ematical background (and a much larger book). With a focus on matrix 
models, the book requires only first courses in multivariable calculus 
and matrix theory (or linear algebra) as prerequisites. Additional mate­
rial needed that might not be found in a first course in these subjects is 

xi 



xii Preface 

covered when required (e.g., topics from Perron-Frobenius theory). Al­
though a student would benefit from a first course in differential equa­
tions (in that basic topics in dynamics would then be familiar), the book 
is mathematically self contained with regard to dynamical systems con­
cepts (equilibria, stability, bifurcations, etc.). It is aimed at the upper­
division undergraduate or first-year graduate student level of mathemat­
ical maturity. The book could be used in a variety of ways, including as 

• a text for a special topics course; 

• a supplement to a mathematical biology course; 

• a resource for a general modeling course; 

• independent reading and research projects; 

• a source of applications of matrix theory and difference equations. 

I have used the material in the book, over many decades, in a va­
riety of teaching and mentoring settings at the University of Arizona, 
including an undergraduate biomathematics course in the Department 
of Mathematics and a mathematical modeling course in the Department 
of Ecology and Evolutionary Biology; undergraduate independent study 
courses for both mathematics and biological majors; undergraduate hon­
ors projects and theses; REU research projects; and research training 
courses for first-year graduate students in the Interdisciplinary Program 
in Applied Mathematics. 

In this book, a student will learn the basics of modeling methodol­
ogy (i.e., how to set up a matrix model from biological underpinnings) 
and the fundamentals of the analysis of discrete time dynamical systems 
(equilibria, stability, bifurcations, etc.). In addition to numerous exam­
ples that illustrate these fundamentals, several applications appear at the 
end of each chapter that illustrate the full cycle of model setup, mathe­
matical analysis, and interpretation. These applications were carefully 
selected so as to illustrate not only the mathematical techniques and the­
orems presented in the chapter but to showcase some specific questions 
and problems of historical and/or contemporary interest in theoretical 
and applied population dynamics. 

A focus throughout the book is on the long-term fate of a population 
(i.e., its asymptotic dynamics), and a central recurrent theme in all chap­
ters concerns the problem of extinction versus survival. Which of these 
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outcomes a model equation predicts typically depends on the parame­
ters (coefficients) appearing in the model equation, and a change in one 
(or more) of these parameters can change the predicted outcome from 
extinction to survival or vice versa. Bifurcation theory is a mathemat­
ical discipline that focuses specifically on dynamic changes caused by 
changes in an equation's parameters; hence, bifurcation theory serves as 
a natural context in which to study population dynamic models, includ­
ing the basic question of extinction versus survival. Each chapter has 
as its centerpiece a basic bifurcation theorem that addresses the issue 
of extinction versus survival. (A twist occurs in Chapter 4 on epidemic 
models where the extinction state is replaced by a so-called disease-free 
state.) The strength of these basic bifurcation theorems is their gener­
ality and relative ease of application. They therefore serve as a baseline 
starting point for the analysis of virtually any model. The shortcoming of 
the basic bifurcation theorems is that they do not give a complete global 
picture of a model's dynamics. This global picture depends heavily on 
the particular details of the model equation under consideration and re­
quires further analysis. 

The topics presented in the Chapters 1-3 are, in my view, the bare 
bones of matrix models and structured population dynamics, both 
the modeling methodology and the analysis of model equations. These 
chapters give a student a solid foundation on which to pursue further 
topics, either in higher level textbooks and scientific/mathematical lit­
erature or as original research projects. Although the models and equa­
tions treated are in discrete time and deal with populations structured 
by discrete classes only, they serve as a starting point for more general 
models involving continuous time and/or population structuring, which 
are mathematically more difficult and challenging. 

Chapters 4 and 5 give two example directions for further topic de­
velopment in structured population dynamics. Models of diseases, used 
in the study of epidemics, are structured population models (the struc­
turing done with respect to disease states). While commonly done using 
ordinary differential equations, discrete time models are also used (e.g., 
see [9]). Chapter 4 gives an introduction to this topic for discrete disease 
classes. (Discrete time models with continuously distributed disease 
classes lead to integro-difference equation type models [e.g., see [94], 
[108]]). Chapter 5 extends population dynamic models to include Dar­
winian evolution by natural selection. The modeling methodology given 
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in this chapter has only recently been developed for discrete time mod­
els [129] and, to my knowledge, appears at this time in no student level 
book. Both of these chapters open the door to innumerable research 
projects for young investigators, given that there are so many pathogens 
and diseases that threaten any biological population and given that evo­
lution is the central principle in biology. 

There are numerous other topics of interest and importance in pop­
ulation dynamics that are not covered in this book. For example, mod­
els that include immigration/emigration and harvesting, periodic (sea­
sonal) or stochastically fluctuating parameters, a spatial component, 
or multispecies interactions are not covered. The reasons, besides the 
length of the book, are that these topics demand higher mathematical 
prerequisites or, in some case, are not yet so well developed for matrix 
models. The topics covered in the book will, however, give a student 
a solid foundation on which to pursue these and other topics found in 
higher level textbooks or in the scientific/mathematical literature. 

I am highly grateful for the comments that I received from several 
reviewers of early drafts of the book. Their critiques and suggestions 
were very helpful in preparing an improved final version. 

Jim Michael Cushing 

Professor Emeritus 

Department of Mathematics 

Interdisciplinary Program in Applied Mathematics 

University of Arizona 

Tucson, AZ 85721 USA 
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Chapter 1 

Population Models 

The basic goal of population dynamics is to account for changes in a bio­
logical population over time. In order to set up a mathematical model for 
this purpose, one needs to decide what population measure to use and at 
what points in time to track it. A single quantity such as the total popu­
lation size ( or density) of individuals, biomass, or dry weight is a coarse 
measurement that ignores differences among individuals. However in 
many (if not most) biological populations, individual organisms differ in 
a variety of ways that significantly affect their fitness (fertility, survival, 
etc.), which in turn affect the dynamics of the population as a whole. At 
an opposite extreme is a model that tracks every individual over time. 
For all but those populations with a small number of individuals, such 
individual-based models consist of so many equations that their analy­
sis is intractable and their study reliant on computer simulations, from 
which it is difficult to attain rigorous and broad insight into their proper­
ties and implications. A middle ground is a structured population model 
in which all individuals are categorized by a finite set of classes based 
on one or more characteristics, such as chronological age, body size or 
weight, life cycle stage, gender, state of health relative to some disease, 
behavioral activity, genetic composition, and so on. The population is 
then represented by the finite-dimensional, vector of population densi­
ties in each class. If this demographic vector is censused at discrete time 
units, then a mathematical model that predicts the vector from one time 
step to the next will take the form of a so-called difference equation 

1 



2 1. Population Models 

(or a recursion formula). Often, as we will see, this prediction is math­
ematically calculated by a matrix multiplication of the vector and, as a 
result, the resulting model for the dynamics of this structured popula­
tion is called a matrix population model [13], [28]. Mathematically, 
such a model is an example of a discrete time dynamical system [95]. 

The distribution of individuals could be described by a continuously 
varying characteristic and tracked continuously through time. In that 
case, the mathematical model for the dynamics of the distribution takes 
the form of a partial differential equation [28], [110]. Another alterna­
tive is to track a continuous characteristic in discrete time, an approach 
that leads to integro-difference equations [94]. As an introduction to 
structured population dynamics, this book will focus on discrete time 
and structuring. For a discussion contrasting discrete versus continu­
ous time modeling of structured populations, see [13]. 

Before delving into a study of matrix population models for struc­
tured populations, we take a brieflook in this introductory chapter at the 
unstructured population case, as modeled by a single difference equa­
tion. We do this for pedagogical reasons, namely so that the reader 
will become familiar, in the lowest-dimensional setting, with modeling 
methodologies for discrete-time population dynamics, with basic math­
ematical techniques used to analyze discrete time models, and with some 
fundamental biological questions that can be addressed by the models. 
This look at single difference equation models is not intended to be a 
wide survey of this topic but is instead intended to provide only a frame­
work and some guidelines for the study of matrix equations in subse­
quent chapters. We will not, therefore, dwell on any specific applica­
tions of single difference equations but instead focus on model deriva­
tion methodology and some basic mathematical methods of analysis. 

1.1. Linear Difference Equations 

Let x (t) denote population density at time t. From a knowledge of x (t), 
our goal is to predict the population density at a future point in time, say 
t + 1. The unit of time is at the modeler's discretion and could, for exam­
ple, simply be a convenient time for a follow-up census (daily, monthly, 
annually, etc.) or be related to some significant biological or physio­
logical process, such as a generation or maturation period. The model 
derivation method we use is based on the following simple accounting 
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principle: at time t + 1 two types of individuals will be present in the 
population census, namely individuals who were not present in the pre­
vious census at time t (new arrivals such as newborns and immigrants) 
and individuals who were present at time t (survivors); thus, 

(1.1) x (t + 1) = new arrivals + survivors. 

To build a mathematical model, we need to provide mathematical ex­
pressions for the new arrivals and for the survivors. These expressions 
will depend, of course, on the biological circumstances we wish to con­
sider. In the introduction to discrete-time population dynamics under­
taken here, we will focus on populations closed to immigration ( or seed­
ing) and not subject to emigration (or harvesting). In this way, new ar­
rivals in equation (1.1) are due to births only, and survivors are individ­
uals present at time t who do not die and are present at time t + 1. 

Suppose each individual alive at time t produces b0 > 0 newborns 
that survive to time t+ 1. Then the total number ofnewborns contributed 
at time t + 1 by all individuals alive at time tis b0 x (t). Note that this 
term has both a reproduction and a survival component since newborns 
between census times need to survive to the next census in order to be 
counted in x (t + 1). Thus, b0 is viewed as an individuals expected num­
ber of births in a unit of time multiplied by the probability that the new­
born survives to the next census time. While keeping this in mind, we 
will refer to the model parameter b0 as a (per capita) fertility rate. Fi­
nally, with regard to the survivors present in the census at t, we assume 
that the fraction of individuals that survive a unit of time is s0 , where 
0 ::::; s0 ::::; 1; hence, the total of all survivors is s0 x (t). (We can also view 
s0 as the probability an individual survives a unit of time.) We call the 
model parameter s0 the (per capita) survival rate. (The reason for the 
zero subscripts will become clear later.) We will always assume 

(1.2) b0 > 0 and O ::::; s0 < 1 

so that some reproduction occurs and that some post-reproduction loss 
occurs by death. 

Under these modeling assumptions, equation (1.1) becomes 

(1.3) x (t + 1) = box (t) + SoX (t) 

or 

(1.4) x(t + 1) = r0x(t), 
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where we define 
r0 := b0 + s0 > 0. 

This difference equation determines, by recursive application, a unique 
sequence of future predictions of the population density x (t) once an 
initial population density x (0) is provided. It defines what is called a 
discrete time dynamical system. We call the sequence x (t) a solu­
tion of equation (1.4). Equation (1.4) together with an initial condition 
x (O) is called an initial value problem. 

A straightforward induction yields a formula for the solution of the 
difference equation (1.4), which permits a prediction of x (t) directly 
from x(0): 

(1.5) x (t) = x (0) rl. 

We call the model parameter r0 the population growth rate. We can 
also write this formula as 

x(t) = x(0)rl = x(O)etlnro_ 

We call ln r0 the exponential population growth rate ln r0 or fitness. 1 

It is clear from both equation (1.4) and the solution formula (1.5) 
that if x (0) ~ 0, then x (t) ~ 0 for all t E Z+. If x (0) = 0, then the 
population remains at zero (i.e., x (t) = 0 for all t E Z+)- A constant 
solution, such as this, is called an equilibrium (or a fixed point). We 
will denote equilibria by Xe. The particular equilibrium Xe = 0 we call 
the extinction equilibrium. On the other hand if x (0) > 0, then it is 
clear from (1.5) that 

l O if O < r0 < 1 
lim x (t) = x (0) ifr0 = 1 . 

t--++oo "f +oo 1 1 < r0 

(1.6) 

In the first case when O < r0 < 1, the population tends asymptotically 
to extinction, while in the third case when 1 < r0 , it grows (exponen­
tially) without bound. In the first case, we say that the extinction equi­
librium is an attractor, while in the third case, we say it is a repeller. 
Thus, as the value of the population growth rate r0 increases through 
1, the population's long-term fate (its asymptotic dynamic) significantly 
changes from extinction to survival (in the form of unlimited exponen­
tial growth), and because of this, we say a bifurcation has occurred. 

1 Often throughout the book we will use the notation exp(x) fore-". So. in this case. we can also 
write r& = exp (t In r0 ). 
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Notice that when r0 = 1, the population remains fixed at its initial con­
dition (that is, x (t) = x (0)) for all t E Z+. In this case, every solution 
(1.5) is an equilibrium. 

These facts are geometrically summarized in Figure 1.1, which 
shows a plot of all equilibria of (1.4) in the (r0 ,x)-plane. This graph 
shows the intersection of two branches of equilibria at the point 
(r0 , x) = (1, 0), namely the branch of extinction equilibrium points 
(r0 , Xe) = (r0 , 0) for all r0 and the branch of nonextinction equilibrium 
points (r0 , Xe) = (1, Xe) for all values of Xe. This plot is called a bifurca­
tion diagram, and the intersection point is called a bifurcation point 
(or more specifically a transcritical bifurcation point since it occurs 
at the intersection of two transversely crossing branches of equilibrium 
points). The bifurcation point (r0 , Xe) = (1, 0) and its critical bifurcation 
value r0 = 1 of the population growth rate r0 are of fundamental impor­
tance biologically since it represents the threshold between extinction 
(when r0 < 1) and survival (when r0 > 1) of the population. 

Some simple algebra shows 

• r0 > 1 if and only if b0 -1 
1 > 1, 

- So 

• r0 < 1 if and only if b0 -1 
1 < 1, and 

- So 

• r0 = 1 if and only if b0 - 1- = 1. 
1- So 

The quantity 

1 
(1. 7) Ro := bo --

1 - s0 

is called the reproduction number. 2 Its biological interpretation can 
be seen from the alternative formula 

Ro= "' 00 bosh, L.Jz=l 

which is obtained from the sum (1 - s0)-1 of the geometric series 
Z:~1 sb, by noting that sb is the probability an individual survives icon­
secutive time steps. Thus, b0sh is the probability of surviving i time units 
multiplied by the reproductive reward for doing so. The sum of these ex­
pected reproductive outputs R0 is then the expected number of offspring 

2 R0 has been also called the reproductive number or value and sometimes the net reproduction 
number. 
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0 ---------- 'o 

Figure 1.1. The bifurcation diagram for the linear equation (1.4) us­
ing r 0 as the bifurcation parameter. The same vertical bifurcation di­
agram occurs at 1 if R0 is used as the bifurcation parameter. A similar 
bifurcation diagram results if b0 is used as the bifurcation parameter 
with bifurcation point relocated from 1 to 1 - s0 • 

produced by an individual over its entire life span. It is no surprise, then, 
that population extinction occurs if R0 < 1, since it means each individ­
ual is not expected to replace itself over its lifetime. 

Remark 1.1. There are two model parameters, b0 and s0, in equation 
(1.3). The quantities r0 and R0 are both quantities derived from these 
model equation parameters. As we have seen, either of these quantities can 
seroe as a diagnostic that will determine the long-term fate of the popula­
tion. Another point of view is to consider the model's asymptotic dynam­
ics as determined by the fertility rate b0 , while holding the suroival rate s0 

fixed. The result is an equilibrium bifurcation diagram identical to that 
in Figure 1.1 with r0 replaced by b0 and the bifurcation point 1 replaced 
by 1 - s0 . Or, similarly, we could.fix b0 and use s0 as the bifurcation pa­
rameter. Then the result is again a bifurcation diagram as in Figure 1.1 
but with r0 replaced by s0 and 1 replaced by 1 - b0 . However, given the 
interpretation of s0 and its corresponding constraint O ~ s0 < 1, a bifur­
cation occurs in this case only if b0 < 1. Our point here is that in addition 
to quantities derived from model parameters, any individual parameter 
in a population model is a possible bifurcation parameter, to be chosen at 
the whim of the modeler (as might be dictated by available data or what 
can be manipulated in experiments). The choice of bifurcation parameter 
will become an even more central issue in later chapters where many more 
parameters typically appear in models. 
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1.2. Nonlinear Difference Equations 

Equation (1.4) is called a linear difference equation because x (t + 1) 
is a linear function of x (t). As a population model, it predicts asymptotic 
survival of the population only if r0 > 1 (equivalently R0 > 1), in which 
case the population grows exponentially. Exponential growth is not, ob­
viously, a sustainable long-term dynamic, since the population density 
will exceed all bounds.3 The model allows for a long-term sustainable 
(i.e., asymptotically bounded) population only in the (highly unlikely or 
"nongeneric") case that r0 exactly equals 1. To have a model that more 
realistically allows for bounded and sustainable population growth, r0 

cannot remain constant over time. 

There are many reasons why fertility and/or survival, and hence r0 , 

might change over time: changes in environmental factors such as tem­
perature and humidity (regular and periodic or irregular and stochastic), 
habitat and food resource availability, interactions with other biological 
species, the occurrence of diseases, etc. A general principle in popula­
tion dynamics is that, even in the absence of such environmental factors, 
fertility and/or survival can also change due to changes in the popula­
tion's density. This can be due, for example, to overcrowding and com­
petition for resources (food, mates, habitat, etc.). This is usually referred 
to as density dependence (or self regulation). For evidence of this in 
natural populations, see [21]. Mathematically, we express this phenom­
enon by letting b (x) ands (x) denote the fertility and survival rates of an 
individual in a population of density x, thereby obtaining from equation 
(1.1) the difference equation 

(1.8) x(t+l) = b(x(t))x(t)+s(x(t))x(t). 

Here a modeler needs to specify mathematical expressions for b (x) and 
s (x) in such a way that b (x) 2:'.. 0 and O ::;; s (x) ::;; 1, at least for x 2:'.. 0. 
When not both b (x) and s (x) are constant functions of x, then equa­
tion (1.8) is a nonlinear difference equation (because the right side 
b (x) x + s (x) x of equation (1.8) is a nonlinear function of x). 

A general way to model population self regulation is to introduce 
factors that modify the density-free fertility and survival rates b0 and s0 : 

(1.9) b (x) = b0 {3 (x) and s (x) = s0 u (x), 

3The British economist and philosopher Kenneth Boulding(a Nobel Prize nominee) is attributed 
with the comment: "Anyone who believes exponential growth can go on forever in a finite world is 
either a madman or an economist." 
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where f3 (x) and CJ (x) describe the effect that population density has on 
fertility and survival respectively. We assume 

(1.10) f3 (0) = 1 and CJ (0) = 1 

so that b0 and s0 retain their biological interpretations as the density-free 
fertility and survival rates, which for that reason, we refer to as inherent 
rates ( or intrinsic rates). With expressions (1. 9), equation (1.8) becomes 

(1.11) x (t + 1) = bo/3 (x (t)) x (t) + SoCJ (x (t)) x (t). 

Clearly, given their biological meaning, we must assume that both den­
sity factors /3 (x) and CJ (x) are nonnegative valued functions and that 
s0 CJ (x) ~ 1 for all values of x ~ 0. Other mathematical properties 
of /3 (x) and CJ (x) depend on biological assumptions and mechanisms 
a modeler wishes to incorporate into the model equation. 

Commonly used density factors are 

(1.12) 

and 

(1.13) C > 0. 

Each of these choices, and any other choice that is a decreasing function 
of x > 0, implies that any increase in population density is deleterious in 
the sense that it has a suppressing or negative effect on fertility and/or 
survival. There are, however, biological situations when increased pop­
ulation density, particularly when it is low, has a positive effect on one 
or both of these vital rates. Such a phenomenon is known as a compo­
nent Allee effect. This can occur, for example, when increasing a low 
population density enhances mating possibilities or improves survival by 
means of group protection from predators [26]. Example rational func­
tions that can be used as a density factor with an Allee component in­
clude 

(1.14) 

and 

(1.15) 
1 + ax 
1 + ax2 ' 

where a, p > 0 and O < s < 1 are real numbers and q ~ 1 is an inte­
ger. The factor (1.14) is an increasing function of x > 0, rising from 1 
to 1/s as x ➔ +oo. The factor (1.15) at first increases as a function of 
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x > 0 before it decreases to Oas x ➔ +oo. Another Allee factor, found 
in [85], is 

(1.16) 

Throughout this chapter, we assume that the inherent vital rates and 
the population regulation factors in equation (1.11) have the following 
properties. 

Assumption 1.2. The inherent fertility and survival rates b0 and s0 sat­
isfy (1.2), and the population density factors satisfy /3, CJ E C2 (R : R+). 
In addition to the normalizations (1.10), assume that s0 CJ (x) ::;; 1 and 
that /3 (x) xis bounded for all x ER+. 

The requirement that /3 (x) x be bounded is the biologically reasonable 
assumption that there is an upper bound on the total number of new­
borns the population being modeled can produce per unit time, no mat­
ter what the population density is. This implies limx-+oo /3 (x) = 0, which 
means that the effect is to decrease an individual's fertility for large pop­
ulation densities to the extent that fertility asymptotically ceases as the 
population density increases without bound. 

An initial condition x (0) E R+ associated with the difference equa­
tion (1.11) defines an initial value problem. By recursive iteration of 
the equation, starting with the initial condition x (0), we obtain a unique 
sequence x (t) fort E Z+, which we call a solution of the initial value 
problem. 

Remark 1.3. R+ is (forward) invariant under Assumption 1.2. By this is 
meant that all solutions of equation (1.11) with an initial condition x (0) ~ 
0satisjyx(t) ~ 0forallt E Z+. Thus, insofarasapplicationsoftheequa­
tion to population dynamics, the values of the density factors /3 (x) and 
CJ ( x) for x < 0 are irrelevant. This means that we can redefine these fac­
tors in any way we want for x < 0 without affecting the dynamics of solu­
tions with x (0) ~ 0 and hence any biological conclusions drawn from the 
equation. We mention this because some density factors commonly used 
in population models are not defined and smooth for all x < 0 as required 
by Assumption 1.2. The factor (1.13), which we will frequently use, is an 
example. When such factors are used we will always assume (even if not 
explicitly mentioned) that they are redefined for x < 0 is such a way that 
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they satisjy Assumption 1.2 (i.e., are twice continuously differentiable for 
all x E R). See Exercise 1.29. 

Example 1.4. The Discrete Logistic Equation. Suppose the time unit 
in the population equation (1.11) is the reproductive period for all indi­
viduals in the population, and suppose that post-reproduction survival is 
not possible (i.e., s0 = O). Such a population called semelparous (or in 
the case of plants monocarpic ). Annual plants are an example, as are 
some longer-lived plants such as the century plants (agaves) and some 
species of bamboo. Examples of semelparity among animals include the 
famous Pacific salmon as well as many species of molluscs (such as some 
squid and octopi), insects, and arachnids. If we use (1.13) for the the fer­
tility factor j3 (x) and assume the reproductive period is one time unit in 
the model, then we get the equation 

1 
x(t+l)=b01 ()x(t), + ex t 

(1.17) 

a difference equation called the discrete logistic equation ( or some­
times the Beverton-Holt equation). Notice that 

1 
j3(x)x = -1 -x 

+ex 

is an increasing function that (by L'Hopital's Rule) approaches 1/c as 
x ➔ oo, and therefore, /3 (x) x s 1/cfor all x ER+. Since in this example 
s0 r:; (x) = 0, we see that Assumption 1.2 is satisfied (see Remark 1.3). 

This famous equation can also be considered when post-reproduc­
tion survival is allowed (i.e., the population is iteroparous) by assum­
ing that both adult reproduction and survival density factors are affected 
identically by population density so that both j3 (x) and r:; (x) are given 
by (1.13) (e.g., see [101]). In this case, equation (1.11) becomes 

1 
x(t + 1) = r01 ( /Ct), + ex t 

which is identical to equation(l.17) with b0 replaced by r0 == b0 +s0 . □ 

The existence, uniqueness, and nonnegativity of solutions-basic 
properties of solutions needed for a mathematical model of population 
dynamics-require mathematical proofs for models based on differen­
tial equations but are obvious for difference equations. Therefore, when 
using difference equations as population models, we can directly turn 
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our attention to properties of solutions and what their biological impli­
cations are. Basic properties of interest are whether solutions blow-up, 
decay, equilibrate, or oscillate. 

Example 1.5. It is uncommon that a formula for the solutions of initial 
value problems is available. An exception is the linear difference equa­
tion (1.4) with its solution formula (1.5). Another notable exception is 
the (nonlinear) discrete logistic equation (1.17). The reader is asked in 
Exercise 1.31 to verify that the solution of (1.17) with initial condition 
x(0) ~ 0is 

(1.18) X (t) = ! 
where 

x(O)bb --~~~x 
Xe-x(O)+x(O)bb e 

x(O) 
--
l+cx(O)t 

__ b0 -1 
Xe·---. 

C 

if b0 -:/=- 1 

if b0 = 1 

Using this formula, we can deduce several interesting facts about the 
solutions of the discrete logistic equation. 

First, note that b0 ::; 1 implies limt---.00 x (t) = 0 for all x (0) > 0. 
Suppose, on the other hand, that b0 > 1. Rewriting the solution formula 
as 

x(t)=Xe x(O) 
(Xe - X (0)) bot + X (0) 

and noting that lim1_, 00 b0t = 0, we find that lim1_, 00 x (t) = Xe for all 
nonzero initial conditions x (0) > 0. Notice that the initial condition 
x (0) = Xe produces the constant solution x (t) = Xe for all t E Z+ 
(called an equilibrium solution or fixed point). We conclude in this case 
that the population no longer goes extinct but instead equilibrates (i.e., 
is or approaches the equilibrium Xe as t ➔ oo ). 

Moreover (letting t range continuously for the moment) from the 
derivative 

dx(t) _ ( _ ) XoXe(lnbo)bb 
d - ~ ~ 2' 

t (xe - x0 + bbXo) 

we see that when b0 > 1, solutions with initial conditions 0 < x (0) < Xe 
are increasing to Xe and those with x (0) > Xe are decreasing to Xe. It 
is this dynamic similarity with the famous logistic differential equation 
from which equation (1.17) derives its name. □ 
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The discrete logistic equation is exceptional in that we have a for­
mula for the solutions of initial value problems. As seen in Example 1.5, 
we can use this formula to determine the properties of solutions and 
their biological implications. For virtually all other model difference 
equations, however, solution formulas are not available and other an­
alytic methods are needed to study solution properties. This is the main 
topic of the next section. 

1.2.1. Equilibria and Local Stability. A basic biological question to 
ask of a population model is, What does it predict about the long-term 
fate of the population? Does the model predict the population will go 
extinct or survive? And if the population is predicted to survive, what are 
the characteristics of its dynamics? Will the population grow indefinitely 
(as predicted by the linear equation (1.4)), equilibrate to a steady state 
(as predicted by the discrete logistic equation (1.17)), or oscillate in some 
manner (as we will see in Section 1.2.3 can be predicted by some models). 
In this section we develop some general analytical tools to address the 
questions of extinction and survival by equilibration. 

An equilibrium (or fixed point) is a constant solution x (t) = Xe for 
all t E Z +. Clearly Xe = 0 is an equilibrium of the general population 
model equation (l.ll), no matter what the factors /3 (x) and J(x) or the 
inherent vital rates b0 and s0 are. All equilibria are found by solving the 
equilibrium equation 

x = [b 0 /3 (x) + s0 J (x)] x 

associated with equation (l.ll). Nonzero equilibria are roots x -::j:. 0 of 
the algebraic equation 

(1.19) bo/3 (x) + soa (x) = 1. 

If we were to solve this equation for x, the answer would in general de­
pend on the inherent rates b0 and s0 • To study how equilibria depend 
on these model parameters, let us fix the survival rate s0 and consider 
equilibria (roots of (1.19)) as they depend on the fertility rate b0 , a de­
pendence we could write as x (b0 ). 

We can geometrically display the dependence of equilibria on b0 , 

as we did for the linear equation in Section 1.1, by plotting x (b0 ) in the 
(b0 , x)-plane to obtain a bifurcation (or equilibrium) diagram. How­
ever, without explicit formulas for the factors /3 (x) and J(x), we obvi­
ously cannot hope to solve the equation (1.19) explicitly for x. So, let us 
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(A) 
X 

(B) 

o...._------x o L--...:::::;;__ ____ h0 
1 -S0 

Figure 1.2. The graph G+ of Equation (1.20) in the (x, b0 )-plane 
shown in (A), when reflected through the b0 = x line, produces 
the part G+ of the graph Gin the first quadrant of the (b 0 , x)-plane 
shown in (B). From intersection points of G+ with a vertical line 
drawn from from a selected value of b0 in (B) one learns whether 
or not there exists a positive equilibrium of the population equation 
(1.11) for that value of b0 and, if so, how many there are. 
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reverse our point of view and solve for b0 = b0 (x) as a function of x. 
The answer is easy enough to obtain, namely 

(1.20) b ( ) = 1 - s0 a (x) 
o X /3 (x) , 

and we can get the desired equilibrium/bifurcation diagram by plotting 
the graph G of this function of x E R+ in the (x, b0 )-plane and then 
interchanging the coordinate axes (for example, by reflecting through 
the line x = b0 ). 

Note that the point (1 - s0 , 0) lies on the graph G and on the axes 
x = 0 in the diagram. The axes x = 0 is also the graph of the extinction 
equilibrium Xe = 0 for all values of b0 • These two equilibria graphs, that 
is the extinction equilibria and the positive (survival) equilibria from G, 
intersect at the point (1 - s0 , 0) in the (b0 , x)-plane, which is called a 
(transcritical) bifurcation point. 

For a population model, we are interested only in x ~ 0, so we will 
denote that portion of G (i.e., the graph of (1.20) for x ~ 0) by G +. See 
Figure 1.2 for a generic picture of how these graphs might look. 

Remark 1.6. Assumption 1.2 implies b0 (x) > 0 for all x and satisfies 
b0 (0) = 1 - s0 and limx----,00 b0 (x) = oo (since limx----, 00 /3 (x) = O). Thus, 
the range of the function b0 (x) is the half-line b0 ~ b0 > 0, where b0 := 
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minx;,:o b0 (x) :s; 1 - s0 . Assumption 1.2 implies there exists at least 
one positive equilibrium for each value of b0 ~ b0. 
Remark 1.7. Given the simple linear relationship between the inherent 
population growth rate r0 = b0 + s0 and the inherent fertility rate b0 , 

the equilibrium diagrams in Figure 1.2 will look the same when drawn in 
the (r0 , x)-plane (as in Figure 1.1) but with intersection (bifurcation) point 
l-s0 replaced by 1. The same is true if they are drawn in the (R0 , x)-plane 
where R0 = b0 / (1 - s0 ) is the inherent reproduction number. 

Before looking at examples of equilibrium bifurcation diagrams con­
structed from the graph G, we consider nonequilibrium solutions and 
the question of whether or not they approach an equilibrium. For this 
purpose, we introduce the following formal definitions. 

Definition 1.8. Assume f E c (n : n), where n ~ R is an open set, 
and assume Xe E n is an equilibrium of the difference equation 

(1.21) X (t + 1) = f (X (t)), 

that is to say x = Xe solves the equilibrium equation x = f(x). 

(a) Xe is locally stable if to any real number c: > 0 there corre­
sponds a real number c5 (c:) > 0 such that Ix (0) - Xel < c5 (c:) 
implies Ix (t) - Xel < c: for all t E Z+. It is unstable if it is not 
locally stable. 

(b) Xe is attracting if there exists a real number c5* > 0 such that 
Ix (0) - Xel < c5* implies limt--->+oo Ix (t) - Xel = 0. 

( c) Xe is locally asymptotically stable if it is both locally stable 
and attracting.4 

(d) The basin of attraction 13 of Xe is the set of initial conditions 
x (0) E O for which liml--->+oo Ix (t) - Xel = 0. 

Local stability means, roughly speaking, that a solution will remain 
as close as you want to the equilibrium for all future time provided it 
is initially sufficiently close to the equilibrium. To be locally asymptot­
ically stable means that, in addition, solutions will tend to the equilib­
rium as t "'"'* +oo if they start sufficiently close to the equilibrium. 

Remark 1.9. In this book when we say that an equilibrium is stable, we 
always mean it is locally asymptotically stable. 

4 It is possible for an equilibrium to be locally attracting but not locally stable. 
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While Definition 1.8 provides a concise description of what stability 
means, it is not in general an easy task to establish the stability or insta­
bility of an equilibrium by direct application of these criteria. Instead 
we rely on analytic techniques that supply conditions that are sufficient 
to determine the stability properties of an equilibrium. The most basic 
technique used for this purpose is the Linearization Principle described 
in the following theorem (a proof of which can be found in Appendix 
A.2). Throughout this book, ax denotes differentiation with respect to x 
(see Table of Symbols). 

Theorem 1.10. The Linearization Principle. Assume Xe is an equilib­
rium of a difference equation (1.21) where f E C1 (O : 0) is continuously 
differentiable on an open interval O ~ R containing Xe. Then Xe is (locally 
asymptotically) stable if 1axf (xe)I < 1 and is unstable if 1axf (xe)I > 1 
where 

It is important to note that the Linearization Principle provides a 
sufficient, but not necessary, condition for local asymptotic stability. This 
is because an application of Theorem 1.10 requires iaxf (xe)I =j:. l. An 
equilibrium for which this inequality holds is called an hyperbolic 
equilibrium. The stability properties of a nonhyperbolic equilibrium, 
when 1axf (xe)I = 1, cannot be determined by the Linearization Prin­
ciple. That is to say, a nonhyperbolic equilibrium can be stable, or 
it can unstable; other methods must be used to determine which is the 
case. 

Example 1.11. For the discrete logistic equation (1.17), 5 

1 J (x) = b0 -1 -x 
+ex 

and 
1 

axf (x) = bo 2 . 

(1 + ex) 
For the extinction equilibrium Xe = 0, we have 1axf (xe)I = b0 , and 
Theorem 1.10 (with O = R) implies this equilibrium is (locally asymp­
totically) stable if b0 < l and unstable if b0 > l. For the positive (sur­
vival) equilibrium Xe = (b0 - 1) /c that exists for b0 > l, we find that 
1axf (xe)I = l/b0 . Theorem 1.10 implies this equilibrium is (locally 

5Recall Remark 1.3. 
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asymptotically) stable. These conclusions are consistent with those de­
rived from the solution formula in Example 1.5. □ 

Using the Linearization Principle in Theorem 1.10, we can obtain a 
general result for the general model equation (l.ll). 

Theorem 1.12. Assume Assumption 1.2 and fix the inherent survival rate 
s0 in the population model equation (l.ll). The extinction equilibrium is 
(locally asymptotically)stablefor b0 < l -s0 and unstable for b0 > l-s0 . 

Proof. With 

(1.22) f (x) = [b 0 ,6 (x) + s0 0' (x)] x, 

we calculate 

axf (0) = bo,6 (0) + SoO' (0) = bo + So, 

and the results follow from Theorem 1.10. □ 

It turns out that we can get some stability information about posi­
tive equilibria of the general model equation(l.11) on the graph G + from 
some simple observations about the geometry of the graph G + in its bi­
furcation diagram. A critical point (x*, r0) on the equilibrium graph G + 
is a point where 

Dxbo(x*) == Dxbo(x)lx=x* = 0. 

In the (x, b0 )-plane, critical points correspond to points where the slope 
equals 0 (i.e., where local extrema or inflection points occur), while in 
the (b 0 , x)-plane, they correspond to points with vertical tangents. 

Theorem 1.13. Assume Assumption 1.2 and fix the inherent survival rate 
s0 in the population model equation (l.ll). 

(a) If G + is decreasing at a point (Xe, b0 ) (specifically, if Dxb0 (xe) < 
O), then the equilibrium Xe of the population equation (l.ll) is 
unstable. 

(b) Suppose G + is increasing at a point (Xe, b0 ) (specifically, if 
Dxb0 (xe) > 0). Then the equilibrium Xe is stable if the point 
(xe, b0 ) is sufficiently close to the bifurcation point (0, 1 - s0 ) or 
to a critical point of G +· 

Proof. A positive equilibrium Xe > 0 satisfies 

bo,6 (Xe) + SoO' (Xe) = 1 
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with b0 = b0 (xe) given by (1.20). To apply the Linearization Principle in 
Theorem 1.10 to equation (1.11), the derivative of J (x), given by (1.22), 
is 

axf (x) = [boJ3 (x) + SoO' (x)] + [bo8xJ3 (x) + so8x0' (x)] x, 

which when evaluated at an equilibrium Xe > 0 gives 

8xf (Xe)= l + [bo8xJ3 (Xe)+ So8xa (Xe)] Xe. 

The equilibrium Xe corresponds to b0 = b0 (xe) so that we can write 

(1.23) 8xf (Xe)= l + [bo (Xe) 8xJ3 (Xe)+ So8xa(Xe)] Xe. 

From (1.20) and (1.19) we know 

b0 (x)J3 (x) + s0a(x) = 1 

for all positive equilibria. If we differentiate both sides of this equation 
with respect to x and evaluate the answer x = Xe, we get 

8xbo(Xe)J3 (Xe)+ bo(Xe)8xJ3 (Xe)+ soaxa(xe) = 0 

or 
bo(Xe)8xJ3 (Xe)+ So8xa (Xe) = -8xbo(Xe)J3 (Xe). 

From (1.23), we get 

8xf (Xe) = l - 8xbo(Xe)J3 (Xe) Xe. 

From this formula, we can obtain the following two conclusions. 

(a) 8xb0 (Xe) < 0 implies 8xf (Xe) > l; hence, Xe is unstable by 
Theorem 1.10. Geometrically, 8xb0 (xe) < 0 means the graph 
G + is decreasing at the equilibrium point (Xe, b0 ). 

(b) If 8xb0 (xe) > 0, then 8xb (xe) < l. Let J3m > 0 be an upper 
bound on J3 (x) x for x :2:. 0, which is guaranteed by Assumption 
1.2. If 

(1.24) 

then 

8xf (Xe) = l - 8xbo(Xe)f3 (Xe) Xe 

2 
> 1 - 8xbo(Xe)f3m > 1 - J3m /3m > -1. 

Consequently, 18xf (xe)I < 1 and Xe is stable by Theorem 1.10. 
The inequalities (1.24) hold if (Xe, b0 ) is sufficiently near a crit­
ical point (where 8xb0 (xe) = O) on the graph G. The inequality 
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18xf (xe)I < 1 also holds if Xe > 0 is sufficiently small, since 
then axf (Xe) is close to 1. 

□ 

Remark 1.14. From the proof, we can be more specific in Theorem l.13(b) 
about how close a point (Xe, b0 ) needs to be to a critical point, or in other 
words how close axbo(Xe) > 0 needs to be to 0, in order to guarantee the sta­
bility of a positive equilibrium. Namely, Xe > 0 is stable if0 < axb0 (xe) < 
2/f3m, 

For the discrete logistic model, the equation (1.20) becomes b0 (x) = 
1 + ex for x ~ 0, and G+ is the graph of this linear equation. See Figure 
L3(A). Here is another example. 

Example 1.15. The Ricker Equation. In the discrete logistic model, if 
we replace the density factor (1.13) by the exponential factor (1.12), we 
get the so-called Ricker equation 

(1.25) x(t+ 1) = b0e-cx(tlx(t). 

Theorem 1.12 tells us that the extinction equilibrium destabilizes as 
b0 increases through 1. With regard to positive equilibria, the equilib­
rium graph G+ is the plot of the function (1.20) b0 (x) = ecx for x ~ 0. 
This graph (shown in Figure l.3(B)) is increasing for all x > 0, which 
tells us that there exists a positive equilibrium for and only for b0 > 1 
and that there is only one positive equilibrium for each b0 > L More­
over, we know from Theorem l.13(b) that the positive equilibrium is 
stable at least for r0 close 1 (i.e., near the transcritical bifurcation point 
(b0 , x) = (1, O)). 

We can learn more about equation (1.25) by applying the Lineariza­
tion Principle. Using the formula for the positive equilibria, namely 
Xe = C 1 ln b0 for b0 > 1, we find that axf (xe) = 1 - ln b0 < 1 ; hence, 
18xf (xe)I < 1 if (and only if) b0 < e2• We conclude that the positive 
equilibria of the Ricker equation are (locally asymptotically) stable for 
1 < b0 < e2 and are unstable if b0 > e2 • 

This example illustrates that positive equilibria located at increasing 
segments of the equilibrium graph G are not always stable. □ 

The bifurcation graphs shown in Figure l.3(A) and (B) for the dis­
crete logistic equation and the Ricker equation are both examples of a 
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Figure 1.3. The equilibrium bifurcation diagrams for (A) the dis­
crete logistic equation (1.17), (B) the Ricker equation (1.15), and (C) 
equation (1.27). The notations indicates a stable equilibrium, and u 
indicates an unstable equilibrium. In all cases the extinction equi­
librum, which forms the horizontal b0 -axis, destabilizes as b0 in­
creases through 1. In (A), the bifurcation is forward-stable, and pos­
itive equilibria are stable for all b0 > 1. In (B), the bifurcation is 
forward-stable, but positive equilibria are stable only for 1 < b0 < e2 • 

In (C), the bifurcation is backward-unstable. In this case, the posi­
tive equilibria on the decreasing segment are unstable, and those on 
the increasing segment are stable. 
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forward bifurcation, by which is meant that near the bifurcation point 
(b0 , x) = (1, 0), the positive equilibria on G + exist for b0 > l. The next 
example illustrates a backward bifurcation, where the positive equi­
libria on G + near the bifurcation point (b0 , x) = (1, 0) exist for b0 < l. 

Example 1.16. A Model with an Allee Component. For a semel­
parous population (s0 = 0) with fertility density factor (1.15) 

(1.26) /3 (x) = 1 + ax 
1 + cx2 ' 

we have the difference equation 

(1.27) 
1 + ax (t) 

x(t+l)=b01 20x(t). + ex t 
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This model implies that an increase in low density will increase fertility 
from the density-free level of b0 to a maximum value of {3 (x*), where 

x* == ¾ (-1 + ✓ 1 + ~a2 ) > o. 

For densities x > Xm, fertility decreases and approaches 0 as x -+ oo. 
Thus, increased population density is a positive effect at low densities 
but a negative effect at high densities. 

Theorem 1.12 tells us that the extinction equilibrium destabilizes as 
b0 increases through 1. With regard to positive equilibria, the equilib­
rium graph G + is the plot of the function (1.20): 

b (x) = 1 + cx2 
0 1 + ax 

for x ~ 0. This graph is decreasing for x ranging from 0 to the critical 
point x* where it has a global minimum, after which the graph increases 
without bound as x -+ oo. This leads to the graph G+ as depicted in 
Figure l.3(C). This bifurcation graph, together with Theorem 1.13, tells 
us several things. 

First, with regard to positive equilibria, there is exactly one positive 
equilibrium x1 > 0 for b0 ~ 1 and exactly two positive equilibria 0 < 
X2 < X1 for bo < bo < 1, where 

b* •- 2 -c + ✓ c2 + ca2 O 
o ·- a2 > · 

Secondly, because the graph G + is decreasing at the smaller equilibria 
x2 < x*, it follows that these equilibria are unstable. Finally, because 
the graph is increasing at the larger equilibria, they are stable at least 
near the critical point (i.e., for b0 ;:,:; b0). D 

Example 1.16 illustrates what can be learned about equilibria from 
the equilibrium graph G + alone. More can be learned, of course, by ap­
plying other methods and analysis. For example, in Exercise 1.30 the 
reader is challenged to calculate a formula for the equilibrium x1 of 
equation (1.27) and use it with the Linearization Principle to show that 
x1 is in fact stable for all values of b0 > b0. 

Note the special role played by the point b0 in Example 1.16 as graph­
ically seen in Figure l.3(C). It is as if the two equilibria x1 and x2 collide 
and annihilate each other as b0 decreases through b0. This change in the 
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existence count of positive equilibria at b0 is a bifurcation call a tangent 
or blue-sky bifurcation. 6 Such bifurcations occur at (local) maxima 
and minima of the graph c+ when plotted in the (x, b0 )-plane. The crit­
ical b0 points where they occur are called tipping or turning points. 

The examples of forward and backward bifurcations shown in Fig­
ure 1.3 are illustrative of the general connection between the direction 
of bifurcation (forward or backward) and the stability of the positive 
equilibria that arise from the bifurcation (i.e., the positive equilibria on 
G+ near the bifurcation point (b0 ,x) = (1-s0 ,0)). Clearly, the bi­
furcation is forward if the slope of G + at this point is positive (i.e., if 
8xb0(0) > 0), and Theorem 1.13 tells us that the positive equilibria on 
G + near the bifurcation point are stable. In this case, we say the bifur­
cation is stable. Conversely, if 8xb0 (0) < 0, then Theorem 1.13 tells us 
that the positive equilibria on G + near the bifurcation point are unsta­
ble, and we say the bifurcation is unstable. In a nutshell, the direction 
of bifurcation tells us the stability of the equilibria. 

From the definition (1.20) of b0 (x) and the normalizations /3 (0) = 
<J(0) = 1 in Assumption 1.2, we calculate 

8xbo(0) = - [(1 - So) 8xf3 (0) + So8x<J(0)]. 

From this, we see that the sign of the weighted average (1 - s0) 8xf3 (0) + 
s08x<J (0) of the sensitivities 8xf3 (0) and 8x<J (0) determines the direction 
and stability of the bifurcation of positive equilibria at (r0 , x) = (1, 0). 
We summarize these results in the following theorem. With the burden 
of some extra notation, but with an eye toward matrix models in subse­
quent chapters, we let K denote 8xb0 (0): 

(1.28) 

Theorem 1.17. Assume Assumption 1.2 and.fix the inherent survival rate 
s0 in the population model equation (1.11). The bifurcation of positive 
equilibria from the extinction equilibrium Xe = 0 at the point b0 = l - s0 

is forward and stable ifK > 0 and backward and unstable ifK < 0. 

Example 1.16 illustrates some significant features of a backward­
unstable bifurcations in general. First, there are values of the inherent 
fertility rate b0 < l for which there exists a stable positive equilibrium 

6Other names include blue-sky catastrophe bifurcation, fold bifurcation. or + 1 bifurcation (be­
cause oxf (Xe) = +l at this point). It is also sometimes called a saddle-node bifurcation. although 
this name is appropriate for the higher-dimensional context of systems of difference equations and not 
for a single difference equation. 



22 1. Population Models 

(i.e., for which the population can survive). Secondly, since b0 < l im­
plies that the extinction equilibrium is also stable, it follows that sur­
vival in this case is initial-condition dependent. Specifically, survival 
requires that x (0) > 0 not be in the basin of attraction of the extinction 
equilibrium Xe = 0, which in Example 1.16 is the interval 0 < x (0) < x1. 

The boundary of the basin of attraction (i.e., the unstable equilibrium 
x1 > O) is a threshold below which a population must not drop if it is 
to survive. A third significant feature of the backward-unstable bifurca­
tion in Example 1.16 is the presence of the tipping point b0. Its presence 
threatens a population with an abrupt collapse and extinction if b0 were 
to decrease below b0 (as might be caused, for example, by environmental 
degradation). 

Definition 1.18. A strong Allee effect occurs when both the extinc­
tion equilibrium and a positive equilibrium are stable.7 

Equation (1.27) in Example 1.16 is an example of a model equation 
with a strong Allee effect. This is a consequence of the backward bi­
furcation caused by the Allee component in the fertility density factor 
(1.26), which since Ox/3 (0) > 0 (and s0 = 0), implies K < 0 in Theorem 
1. 17. The presence of an Allee component in an equation does not, how­
ever, necessarily imply that a strong Allee effect occurs. When a strong 
Allee effect does not occur in a model that has an Allee component, as in 
Example 1.19, a weak Allee effect is said to occur. Here is an example. 

Example 1.19. Consider the population model equation (1.11) with 
density factors 

1 
{3 (x) = 1 + ex 

d ( ) 1 + X (t) 
an CJX= 1 

1 + 2x(t) 

under the assumption that the inherent survival rate s0 satisfies 

1 
(1.29) So < 2. 

This model has a negative density effect on fertility (the same as that in 
the discrete logistic equation) and an Allee component effect in survival 
since {3 (x) and CJ (x) are decreasing and increasing functions of x ~ 0, re­
spectively. Note that density-dependent survival s0 CJ (x) increases from 

7More generally, a strong Allee effect occurs if the extinction equilibrium is stable and there also 
exists a positive (survival) attractor, which need not be an equilibrium [33 J. See Section 3.5.4 in Chapter 
3 for an example. 
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s0 to 2s0 < 1 as population density x increases without bounded. A 
straightforward calculation shows that 

1 
1( = (1 - So) C - 2So, 

and by Theorem 1.17, the bifurcation at b0 = 1 - s0 is forward-stable if 

1 So 
(1.30) C > -2 -1 -. 

- So 

Following our procedure in Section 1.2.1 for analyzing positive equilib­
ria, we solve the equilibrium equation for b0 to obtain (from (1.20)) 

b ( ) = (l ) (1 - 2s0 ) x + 2 (1 - s0 ) 
0 x + ex 2 . 

x+ 
Performing some calculus on this function of x, we find under the as­
sumptions (1.29) and (1.30) that b0 (x) is a monotone increasing func­
tion of x > 0, ranging from 1 - s0 to +oo. It follows that there exists 
a positive equilibrium for and only for b0 > 1 - s0 , and as a result, a 
strong Allee effect does not occur in this model equation under these 
assumptions. □ 

The following theorem shows that a strong Allee effect and the ex­
istence of a tipping point are general features of backward bifurcations 
in a population equation (l.ll). 

Theorem 1.20. Assume Assumption 1.2 and fix the inherent survival rate 
s0 in the population model equation (l.ll). If the bifurcation at b0 = l-s0 

is backward (and hence unstable), then there exists a tipping point b0, O < 
b0 < 1, and a strong Allee effect occurs (at least) for bo :2:; b0. 

Proof. Assumption 1.2 implies that limx--+oo /3 (x) = 0; hence, 
limx--+oo b0 (x) = oo. Since a backward bifurcation implies b0 (x) < 1 for 
x :2:; 0, it follows that b0 (x) has a global minimum at some x = x* > 0. 
The point (b'0, x*) = (b 0 (x*), x*) is a critical point of c+; hence, b0 is 
a tipping point. For b0 ;S b0, there are no points on G + and hence no 
positive equilibria. For each b0 :c; b0, there exist (at least) two points 
(b0 , x1 ) and (b0 , x2), with x1 < x* < x2 , on c+ at which c+ is decreas­
ing and increasing, respectively. By Theorem 1.13, x1 is unstable and x2 

is stable. □ 

Theorem 1.20 implies that a strong Allee effect (with a tipping point) 
always occurs in a population equation (l.ll) when the bifurcation at 
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b0 = 1 is backward. The next example shows, however, that it is also 
possible for a strong Allee effect to occur even when the bifurcation is 
forward. 

Example 1.21. Hysteresis. The model equation 

(1.31) ( xq (t) ) 1 
x(t+l)=b0 l+p () x(t)+s01 ()x(t) a+ xq t + ex t 

incorporates an Allee component (1.16) in the fertility factor f3 (x) and a 
negative population regulation effect on the post reproductive survival 
factor u(x). We consider the case when the integer q ~ 2. By Theorem 
1.12, the extinction equilibrium loses stability as b0 increases through 
1 - s0. A calculation shows K = -s0e < 0, and we see by Theorem 1.13 
that a forward, stable bifurcation of positive equilibria occurs. 

While no tractable formula exists for the positive equilibria, one can 
learn a great deal about their existence and stability from the geome­
try of the equilibrium graph G + and from Theorem 1.13. The graph G + 
defined by (1.20) can be sketched using methods from calculus and an­
alytic geometry or, for selected values of the coefficients, obtained with 
the aid of a graphing program. Two examples are shown in Figure 1.4 
with q = 2. In this case, 

r(x) = b0 (1 + p~)+s0-1 
1 , a+ x + ex 

and the bifurcation graph G + is the graph of the equation 
-1 

bo = ( 1 - So 1 : ex) ( 1 + pa :2x2) 
in the (b0,x)-plane. These examples show what is called hysteresis, 
whereby the equilibrium graph has the S-shape bend in it, giving rise to 
multiple equilibria for certain b0 values and two tipping points for b0 • 

In Figure 1.4(A), positive equilibria exist for and only for b0 > 1. 
Because of the S-shaped bend in the equilibrium graph, we see that there 
is an interval of b0 values for which there exist three positive equilibria. 
This interval is bordered by two tipping points (critical points of G+). 
The stability information obtainable from Theorem 1.13 is also indicated 
in the graph. For another example of this hysteresis phenomenon, see 
Section 1.3.2. 

Figure 1.4(B) shows another example in which the S-shape bend in 
the equilibrium graph is so extreme that positive equilibria (in fact two 
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(A) 
X 

(B) 

Figure 1.4. The equilibrium graphs of Equation (1.31) with param­
eter values q = 2, c = 0.5, s0 = 0.1. In plot (A) a = 0.1 and in (B) 
a= 0.05. By Theorem 1.13 equilibria on the decreasing segments are 
unstable and those on increasing segments near the critical points 
(indicated by solid circles) are stable. 
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positive equilibria) exist for values b0 on an interval b0 < b0 < 1, where 
b0 is a tipping point. For these values of b0 the extinction equilibrium is 
stable, which shows that a strong Allee effect can occur in a population 
equation (l.ll) even when the bifurcation at b0 = 1 - s0 is forward. □ 

Remark 1.22. Because of the simple relationships between b0 and the in­
herent population growth rate r0 = b0 + s0 and the inherent reproduction 
number R0 = b0 / (1 - s0), Theorems 1.12, 1.13, 1.17, and 1.20 could be 
restated with b0 replaced by either r0 or R0 . In either case, the bifurcation 
point b0 = l - s0 is then replaced by l. 

1.2.2. Global Asymptotic Stability. It is important to remember that 
the stability of an equilibrium, as defined by Definition 1.8 and as de­
termined by the Linearization Principle, is a local phenomena in that 
it concerns the dynamic properties of only those solutions with initial 
conditions close to the equilibrium. That a stable equilibrium does not 
necessarily attract all solutions is clearly illustrated by Examples 1.16 
and 1.21 which, for some values of b0 , have multiple stable and unstable 
equilibria. 

Definition 1.23. Assume Xe E O is an equilibrium of a difference equa­
tion (1.21) with f E C1 (0 : 0), where O is an open interval contain­
ing Xe, and let 1B ~ 0 be its basin of attraction. We say Xe is globally 
asymptotically stable on a set A if it is locally asymptotically stable 
and A~ 1B. 
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Example 1.24. In Example 1.11, we applied the Linearization Principle 
to the extinction equilibrium Xe = 0 and the positive (survival) equilib-
rium 

bo -1 
X =--

e C 

of the discrete logistic equation (1.17) to show that they are locally 
asymptotically stable for b0 < 1 and b0 > 1, respectively. In Exam­
ple 1.5, we saw that x (0) > 0 implies limt_, 00 x (t) = 0 for b0 < 1 and 
limt-+oo x (t) = Xe for b0 > 1. Thus, x = 0 is globally asymptotically sta­
ble on A = int (R+) for b0 < 1, and Xe is globally asymptotically stable 
on A= int CR+) for b0 > 1. D 

In general, it is not an easy problem to determine the basin of attrac­
tion IEB of an equilibrium or if it is globally asymptotically stable on a set 
of interest. Solution formulas are not in general available for nonlinear 
difference equations, as in Example 1.24, so other methods are required 
for the study of global attractivity [62], [63], [98]. With regard to the 
extinction equilibrium, here is a theorem that is often applicable. 

Theorem 1.25. In addition to Assumption 1.2, suppose the density factors 
in equation 1.11 satisfy 

(1.32) j3 (x) ::; j3 (0) = 1 and a (x) ::; a (0) = 1 for all x ~ 0. 

Then r0 = b0 + s0 < 1 implies that the extinction equilibrium Xe = 0 is 
globally asymptotically stable on A= R+. 

Proof. For any initial condition x (0) E IR+ the solution x (t) of equation 
(1.11) satisfies x (t) ~ 0 for all t E Z+ and, by (1.32), the inequalities 

0 ::; x (t + 1) ::; b0 x (t) + s0 x (t) = r0 x (t). 

An induction argument shows 0 ::; x (t) ::; rlx (0) for all t E Z+, and it 
follows that limt .... 00 x (t) = 0 (i.e., that Xe = 0 is attracting on IR+). Since 
it is also locally asymptotically stable by Theorem 1.12, it follows that 
Xe = 0 is globally asymptotically stable. □ 

With regard to other equilibria, the following theorem (which the 
reader is challenged to prove in Exercise 1.39) is often useful. 

Theorem 1.26. Assume J E C ( 0 : 0) with 

0 = {x ER : 0 < x < j3::; +oo} 

and has a.fixed point Xe E 0. 
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(a) If,for all x E 0, the function f(x) satisfies the two conditions 
(i) x < J(x) < Xe when x < Xe and 

(ii) J(x) < x when x > Xe, 

then Xe is globally asymptotically stable on 0. 
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(b) If oxf (x) > 0 and o;f (x) < 0 on 0, then conditions (i) and (ii) 
in part (a) hold. 

The density factors 

1 
/3 (x) - and a(x) = 1 - l+cx 

in the discrete logistic equation (in which s0 = 0) for a semelparous 
population 

1 
x (t + 1) = b0 1 ( ) x (t) + ex t 

satisfy the inequalities (1.32); hence, by Theorem 1.25, the extinction 
equilibrium is globally asymptotically stable if r0 = b0 < 1. For r0 = 
b0 > 1, we saw in Example 1.24, by making use of the solution formula 
(1.18), that the positive equilibrium 

b0 -1 
Xe=--

C 

is globally asymptotically stable on int (R+ ). This conclusion can be 
reached without the solution formula by applying Theorem 1.26(b) with 
0 = int (R+) and f (x) = b0 x/ (1 + ex) for which 

oxf(x)= bo 2 >0 and o;f(x)=-2 cbo 3 <0 
(l+cx) (l+cx) 

for all x > 0. 

Example 1.27. The density factors 

f3 (x) = e-cx and a(x) = 1 

in the Ricker equation (in which s0 = O) for a semelparous population 

x(t+ 1) = b0e-cx(tlx(t), 

satisfy the inequalities (1.32); hence, the extinction equilibrium is glob­
ally asymptotically stable if r0 = b0 < 1. 

We saw in Example 1.15 that the positive equilibrium 

(1.33) 
lnb0 

Xe=-­
C 



28 1. Population Models 

exists and is locally asymptotically stable for 1 < b0 < e2 (and unstable 
for b0 > e2). Is it globally asymptotically stable on int CR+)? To apply 
Theorem 1.26, we calculate the derivatives 

8xf (x) = b0 (1 - ex) e-cx and a~J (x) = eb0 (ex - 2) e-cx 

and find that the conditions axf (x) > 0 and a;J (x) < 0 hold on the 
interval 

n={x:O<x<~}-

Theorem 1.26(b) applies if f (x) = b0 e-cxx maps O into itself and if 
Xe E 0. The first condition holds if 

maxf (x) = f (!) = b0e-1! < !, 
n C e C 

that is to say if 0 < b0 < e. It is not difficult to see that Xe E O for this 
same interval of b0 values. We conclude, by invoking Theorem 1.26(b), 
that the positive equilibrium (1.33) is globally asymptotically stable on 
the interval O for all b0 on the interval 0 < b0 < e. 

When b0 lies in the interval 0 < b0 < e, all solutions with posi­
tive initial conditions x (0) E int (R+) satisfy x (t) E O fort ~ 1 since 
max0 f (x) < 1/c. So it follows that Xe is globally attracting, hence glob­
ally asymptotically stable, on the larger interval int CR+). 

In fact, it turns out that Xe is globally asymptotically stable on 
int CR+) for all b0 in the larger interval 0 < b0 < e2 , but this is more 
difficult to prove; see [64]. □ 

1.2.3. Cycles and Chaos. The discrete logistic equation (1.17) predicts 
population extinction if b0 < 1 and survival by equilibration for all b0 > 
1. The Ricker equation (1.25), on the other hand, predicts survival by 
equilibrium only if b0 > 1 and less than e2 • So what does the Ricker 
equation predict when b0 > e2? The sample solution for this case shown 
in Figure 1.5 illustrates that while the population does survive, it does 
not equilibrate. Instead it (seemingly) settles into a cyclic oscillation of 
period 2. This is typical for difference equations (1.21) when changes in 
a coefficient causes an equilibrium Xe to lose stability because axf (xe) 
decreases through -1, which is what happens, for example, to the pos­
itive equilibrium of the Ricker equation as b0 increases through e2 (see 
Example 1.15). In general when this occurs, periodic solutions of pe­
riod 2 (called 2-cycles) come into existence by a bifurcation from the 
equilibrium (either forward or backward). This bifurcation is called a 
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period-doubling bifurcation.8 This is in contrast to the bifurcation of 
equilibria when the extinction equilibrium loses stability when axf (xe) 
increases through +l, as in Theorem 1.17. Moreover, the sample solu­
tion shown in Figure LS(B) approaches a period 2 oscillation as time 
goes on, which suggests that the 2-cycle is an attractor. In the bifurca­
tion diagram in Figure 1.5, we see even more than a period-doubling 
bifurcation at b0 = e2• As b0 continues to increase, the period 2 solu­
tions give way (by another period-doubling bifurcation) to solutions of 
period 4 (called 4-cycles), which in turn give way to solutions of period 
8 (8-cycles), and so on. This period-doubling cascade seemingly goes on 
indefinitely but in fact does come to an end, and solutions ultimately 
oscillate wildly with no discernible pattern; see Figure LS(E). (Such a 
bifurcation sequence is often called a "route-to-chaos.") 

A p-cycle is a solution of x (t + 1) = J (x (t)) for which there ex­
ists a positive integer p (called the period) such that x (t + p) = x (t) 
for all t E Z+. An equilibrium is, of course, a solution of period p = 
1 (or of any period, for that matter), a solution of period 2 is also so­
lution of period 4 (or any multiple of 2), and so on. In this book, a 
p-cycle is a periodic solution whose minimal period is p. So, for 
example, x0 i=- x1 for a 2-cycle. A p-cycle is characterized by p points 
xi == x (i) (for i = 0, 1, • • •, p - 1) that are indefinitely repeated. 

The existence of a p-cycle can be mathematically studied by noting 
that its initial point x0 (or, indeed, any point xi in the cycle) is fixed point 
of the pth composite jCPl (x) off (x). For example, a 2-cycle consists of 
two points x0 i=- x1 = f (x0 ) for which x0 = JC2l (x0 ), where 

JC2l (x) == J (f (x)). 

We say a 2-cycle is stable (or unstable) if x0 it is a stable (or unstable) 
equilibrium of the difference equation x (t + 1) = jC2l (x (t)) constructed 
from the composite. Noting that the chain rule gives 

we see that the Linearization Principle implies a 2-cycle is stable if 

8Other names are a 2-cycle or a flip or -1 bifurcation. 



30 1. Population Models 

8 X 

6 

4 
(A) 

2 ! 
0 ro 

0 4 8 12 16 

(Al (Bl (C) 
7 X 7 X 7 X 

6 
5 
4 
3 
2 

0 
0 5 

6 6 
5 5 
4 4 
3 3 
2 2 
1 1 
0 0 

10 15 20 25 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 
time time 

(Dl 
7 X 

6 
s 
4 
3 
2 
1 

s 10 1s ~o 25 30 35 40 
time 

s 
4 
3 
2 
1 

time 

(El 

20 40 60 80 100 
time 

Figure 1.5. The bifurcation diagram for the Ricker equation (1.25) 
with c = 1 is shown together with a sample solution (initial condition 
x (0) = 10) for five selected r 0 = b0 values: (A) r0 = 5, (B) r0 = 10, 
(C) r0 = 14, (D) r0 = 14.6, (E) r0 = 18. The graph shows, above 
each b0 value, the number of points in the attractor. For example, 
for (B) there are two points, indicating the attractor is a 2-cycle (not 
two equilibria) and for (C) and (D) there are four and eight points, 
indicating the attractors are a 4-cycle and 8-cycle respectively. At b0 

such as (E) the diagram indicates a large number of points in the at­
tract, which could mean a cycle of very large period or a non periodic 
("chaotic") attractor. 

and unstable if 18xf (x1) 8xf (x0 )1 > 1. More generally, for a p-cycle 
x0 , Xi,••• , Xp_ 1 , we apply the Linearization Principle to the pth compos­
ite equation Xt+i = jCP) (x1) and utilize the derivative 

8xfCP) (X1) = 8xf (xp-1) ··· 8xf (X1) 8xf (Xo) 
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when applying the Linearization Principle. We get that a p-cycle is 
stable if 

and unstable if 

1axf(xp-1)·•-axfCx1)axfCxa)I > 1. 

When loxfCP) (x0 )1 =f- 1, and hence the Linearization Principle applies, 
the p-cycle is called a hyperbolic p-cycle. See Exercise 1.41 for more 
on p-cycles. 

We will not pursue a rigorous study of cycles nor of more compli­
cated attractors, as this lies beyond the mathematical goals of this book; 
readers are referred to [62], [63]. We will, however, on occasion employ 
this method of utilizing the composite map to study periodic cycles. 

1.3. Applications 

1.3.1. Trade-Off Between Fertility and Post-Reproduction Sur­
vival. Trade-offs are a fundamental principle in life history strategies, 
and one of the most basic involves reproductive effort [119]. To funnel 
more resources and effort into reproduction comes at a cost of fewer re­
sources that can be allocated to other important processes that enhance 
an individual's survival, health, growth, etc. Consider a simple model, 
based on the model equation (1.11), in which a food resource is allo­
cated between an individual's inherent fertility and its survival. Specif­
ically, assume the inherent birth rate has the form b0 = nprp, where 
p is amount of food resources consumed (per unit time), rp is the frac­
tion of consumed resource allocated to reproduction, and n is number 
of surviving newborns per adult per unit resource. Suppose the remain­
ing fraction 1 - rp of the resource is allocated toward post-reproductive 
survival so that s0 = s (1 - rp ), where s is the maximal possible post­
reproduction survival rate. Finally, if we assume competition for the 
food resource is modeled logistically with f3 (x) = II (1 + ex) and that 
post-reproductive survival is density-free (a(x) = 1), then the general 
model equation (1.11) becomes 

1 
(1.34) x (t + 1) = nprp I+ ex (t) x (t) + s (1 - rp) x (t) 

with 
n, p, e > 0, 0 < s < 1, and O :S rp '.S 1. 
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Since the only density factor (/3 (x) = 1/ (1 + ex)) in equation (1.34) 
is a decreasing function of x (in particular, is strictly decreasing at Xe = 
0), we conclude that K > 0 and, by Theorem 1.17, that the bifurcation of 
positive equilibria that occurs when the extinction equilibrium destabi­
lizes as 

r0 = npqi + s(l - qi) 

increases through 1 is forward and stable. Thus, the extinction equilib­
rium is (locally asymptotically) stable if r0 < 1 and unstable if r0 > 1 
when there exists a (locally asymptotically) stable positive equilibrium, 
at least for r0 ~ 1. 

We can say more for this equation since it is not algebraically diffi­
cult to solve the equilibrium equation 

1 
x = npqi-1--x + s(l - qi)x 

+ex 
for the (unique) positive root 

1 r0 -1 
Xe= cl-s(l-qi)' 

which shows there exists a (unique) positive equilibrium for all r0 > 1. 
Moreover, using 

1 
f (x) = npqi-1 -x + s(l -qi)x 

+ex 
and I = int (R+) and calculating the derivatives 

1 
8xf(x)=npqi 2 +s(l-qi)>0 and 

(1 + ex) 

a;J (x) = -2cnp qi 3 < 0, 
(1 + ex) 

we conclude from Theorem l.26(b) that Xe is globally asymptotically sta­
ble on int (R+) for all r0 > 1. 

If a species had a "choice," what life history strategy would it choose: 
high fertility with low post-reproduction survival or vice versa? The an­
swer depends of course on what the goal is. If, for example, the goal were 
to obtain the largest population level at equilibrium, then we see from 
the formula for Xe and r0 that 

dxe 1- s 
-d = np 2 > 0. 

qi e(l-s(l-qi)) 
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Consequently, Xe is maximized at <p = l. 

The maximum equilibrium population density is at­
tained, according to the model (1.34), by choosing a 
semelparous life history strategy. 
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However, iteroparous species are abundant in nature despite the fact 
that some theoretical arguments, such as the one here, argue in favor 
of semelparity (this is known as Cole's Paradox [22]). We will revisit this 
issue in Chapter 5 when we allow <p to be subject to natural selection 
(rather than somehow "chosen" by the species or a modeler). 

1.3.2. A Spruce-Budwonn Model. The spruce budworm is a widely 
distributed defoliator of coniferous trees (mainly spruce and fir) whose 
periodic outbreaks cause millions of acres of damage throughout North 
America. The occurrence of outbreaks are associated with the beetle's 
interaction with predator species, mostly birds who feed on the juvenile 
stages (larvae and pupae). A famous differential equation model based 
on the assumption of a constant predator population density p exhibits a 
hysteresis effect that is instrumental in explaining the periodic outbreaks 
of spruce budworm infestations [107]. Here, we will consider a discrete 
time model based on the same basic modeling assumptions. 

We modify the discrete logistic equation for a semelparous popula­
tion (such as the spruce budworm) by including an additional factor a 
that accounts for the loss of newborns due to predation: 

1 
x (t + 1) = b01 ( ) ax (t), + ex t 

where a is the fraction of newborns that escape predation. Following 
[ 49], we model a using what is called a Holling III functional response 
as follows. The amount of prey consumed by the predator population 
(in a unit of time) is 

(1.35) 

where Th < 1 is the handling time (the time spent by a predator consum­
ing a prey) and a is called the prey discovery time. We assume that 

fr;; 
P < 2y Cl == Pmax 
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so that the amount of prey consumed (1.35) does not exceed the amount 
x available. The amount of prey that survive predation is 

apx2 ( apx ) X------ 1----- X 
1 + aThx2 - 1 + aThx2 ' 

which implies that the fraction of the prey that survive is 

a= 1- apx 
1 + aThx2 

Thus, we arrive at the equation 

(1.36) xt+l=b 1- xt 1 ( apx (t) ) 
( ) 0 1 + ex (t) 1 + aThx2 (t) ( ) · 

Since the density factor 

x __ l_ ( 1 _ apx ) 
/3 ( ) - 1 + ex 1 + aThx2 

satisfies 8xf3 (0) = - (c + ap) < 0, we find by Theorems 1.12 and 1.17 
that the extinction equilibrium loses stability as r0 = b0 increases 
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Figure 1.6. The equilibrium diagram for the spruce-budworm equa­
tion (1.36) with parameter values (1.38) exhibits an S-shape hystere­
sis curve. The letters sand u indicate (local asymptotic) stability and 
instability, respectively. Notice the instability of the equilibria along 
the segment delineated by the hash marks. This is not inconsistent 
with Theorem 1.13, which guarantees stability along increasing seg­
ments near bifurcation points. 
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Figure 1.7. The time series plots of two sample solutions of spruce­
budworm equation (1.36) with parameter values (1.38) are shown for 
six selected b0 values. In each plot, the graphs of two solutions with 
initial conditions x (0) = 20 and 75 are shown. For b0 = 8, both 
solutions tend to an equilibrium; for b0 = 20 and 30, they are 2-cycle 
and 4-cycle, respectively; for b0 = 40, one solution tends to a 2-cycle 
while the other to an equilibrium; for b0 = 50, they tend to different 
equilibria; and for b0 = 65, they tend to the same equilibrium. 
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through 1 and that the resulting bifurcation of positive equilibria is for­
ward and stable. 

We can get a global picture of the equilibria using Theorem 1.13 
from the graph G+ of (1.20), which in this case is b0 (x) = 1/{3 (x) or 

1 + aThx2 

b0 (x) = (1 + ex) 1 Ti 2 . 
- apx + a hx 

(1.37) 

There are two cases: either the graph G + is monotonic or it has two 
critical points and a cubic polynomial-like shape (see Exercise 1.42). The 
latter case corresponds to a hysteresis S-shape in a bifurcation diagram in 
the (b 0 , x)-plane, similar to that in Example 1.21 and Figure 1.4. Figure 
1.6 shows an equilibrium bifurcation diagram that illustrates the latter 



36 1. Population Models 

case using parameter values 

(1.38) c = 0.25, a = 0.01, Th = 0.25, and p = 9 

(for which Pmax = 10). The graph in Figure 1.6 has a hysteresis S­
shape for which there are multiple positive equilibria for b0 ranging from 
b0 ~ 34.78 to 62.46. By Theorem 1.13, equilibria on the decreasing seg­
ment in the graph are unstable equilibria, and the equilibria on either of 
the two increasing segments are stable, at least near the three bifurca­
tion points at b0 = l and b0 ~ 34. 78 and 62.46. Numerical simulations 
suggest that the equilibria on the upper increasing branch are stable for 
all b0 ~ 34. 78, whereas the positive equilibria on the lower increasing 
branch are stable only near b0 ~ l and b0 ;§ 62.46 (as guaranteed by 
Theorem 1.13). There occurs a period-doubling bifurcation at b0 ~ 9.14, 
and the resulting 2-cycles are stable near this bifurcation point, but they 
undergo a period-doubling bifurcation to a 4-cycle at b0 ~ 22.29. This 
sequence of bifurcations is reversed as b0 continues to increase and pass 
through b0 ~ 48.70, after which the equilibrium is restabilized (until it 
disappears for b0 ~ 62.46). (In Exercise 1.43, you are asked to use the 
Linearization Principle for these numerical examples to verify the stabil­
ity and instability of equilibria.) Sample time series solutions in Figure 
1.7 and the bifurcation diagram in Figure 1.8 illustrate these bifurcation 
phenomena. 
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Figure 1.8. The bifurcation diagram for the spruce-budworm equa­
tion (1.36) with parameter values (1.38) exhibits an S-shape hystere­
sis curve. 
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1.4. Concluding Remarks 

The goal of this introductory chapter is to introduce basic methods for 
deriving discrete-time population dynamic models and to present sev­
eral basic concepts and theorems for the analysis of their asymptotic dy­
namics. A focus was on equilibria, both survival and extinction equi­
libria, and their stability properties as they depend on the parameters 
b0 and s0 (the inherent fertility and survival rates) in the general model 
equation (1.8)-(1.9). The mathematical approach was that of bifurca­
tion theory. While b0 was primarily used as the bifurcation parameter, 
we could have used other parameters, such as s0 and the derived quan­
tities r0 and R0 , in which case the bifurcation diagrams would be similar 
but with different bifurcation points; see Remark 1.1. 

For pedagogical purposes, this introduction is done in the simplest 
(lowest dimensional) case using models described by a single difference 
equation which, while adequate for these introductory purposes, is in­
adequate in many important ways as a model for biological populations. 
Such an equation describes a population by means of a single quantity 
(state variable) for population density, which therefore in effect treats all 
individuals in the population as identical with regard to their physical 
state and life cycle stage. In the following chapters we will explore what 
are called discrete-time structured population models that account for 
differences among individuals in a population. This will entail describ­
ing a population by more than just a single aggregated state variable. As 
a result, the dynamics of the population will be described mathemati­
cally by more than one difference equation for whose analysis we will 
employ matrix notation and analysis. 

1.5. Exercises 

Exercise 1.28. Under Assumption 1.2, prove that the general popula­
tion equation (1.11) has at least one positive equilibrium for each r0 = 
bo +So> 1. 

Exercise 1.29. A factor f3 (x) given by (1.13) has a (nonremovable) sin­
gularity at x = -1/c. Choose c1 and c2 so that the redefinition of this fac­
tor for x < 0 given as follows is defined and differentiable for all x E R, 
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in keeping with Remark 1.3: 

{ 
1 for X ~ 0 f3 (x) = l!cx 

x +c1x+c2 forx<O 

How would you do the redefinition to obtain a twice differentiable fac­
tor? (HINT: Use a cubic polynomial.) 

Exercise 1.30. Solve the equilibrium equation for equation (1.27) in Ex­
ample 1.16 to find formulas for the positive equilibria x2 and x1. Use 
your formulas and the Linearization Principle (Theorem 1.10) to show 
that the equilibrium x1 is stable for all values of Y0 > YJ and equilibrium 
x2 is unstable for all values ofr0 satisfying YJ < Yo < 1. 

Exercise 1.31. (a) Verify that (1.18) is a formula for the solution of the 
discrete logistic equation (1.17) where Xe = (b0 - 1) / c. (b) Derive the 
formula (1.18) by making the change of variable y (t) = 1/x (t), obtain­
ing a linear difference equation for y (t), and finding a formula for its 
solution by induction. 

Exercise 1.32. Consider a modification of the discrete logistic model 
equation that allows for (population density free) post-reproductive sur­
vival (iteroparity) 

1 
x(t+l)=b01 ()x(t)+s0x(t) + ex t 

with O < s0 < 1. Use the Linearization Principle (Theorem 1.10) to 
prove the following facts about this model: (a) the extinction equilibrium 
Xe = 0 destabilizes as Y0 = b0 / (1 - s0 ) increases through l; (b) there 
exists no positive equilibria if Yo < 1, and there exists a unique positive 
equilibrium Xe > 0 if Yo > 1; and ( c) the positive equilibria for Yo > 1 are 
locally asymptotically stable. Draw a bifurcation diagram for equilibria, 
using b0 as the bifurcation parameter. 

Exercise 1.33. Repeat parts (a) and (b) of Exercise 1.32 for the equation 
iteroparous version of the Ricker equation 

X (t + 1) = b0 e-cx(t)x (t) + s0x (t) 

with O < s0 < 1. Use the Linearization Principle (Theorem 1.10) to 
prove the positive equilibria Xe > 0 are locally asymptotically stable for 
1 < Yo < exp(2/ (1 - s0)). Draw a bifurcation diagram for equilibria, 
using Yo as the bifurcation parameter. Show that axf (Xe) = -1 when 
Yo = exp(2/ (1 - s0 )). 
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Exercise 1.34. Analyze the equilibria, and their stability properties, of 
the equations 

1 
x (t + 1) = b0x (t) + s01 ( / (t) and + ex t 

X (t + 1) = b0 x (t) + s0 e-cxx (t) 

and draw a bifurcation diagram for each equation. 

Exercise 1.35. Use the Linearization Principle (Theorem 1.10) to prove 
Theorem 1.13. 

Exercise 1.36. Apply Theorems 1.13, 1.17, and 1.20 to each of the fol­
lowing equations (all coefficients are positive with O < s0 < 1): 

1 1 
(a) x (t + 1) = b01 ( / (t) + s0 1 ( / (t); +e1x t +e2x t 
(b) x (t + 1) = b0 e-cix(t)x (t) + s0 e-czx(t)x (t); 

1 + ax(t) 1 
(c) x(t+l)=b01 2()x(t)+s01 ()x(t); + e1X t + e2X t 

1 + ¢ax2(t) 
(d) X (t + 1) = bo l + ax2(t) X (t) + SoX (t). 

Exercise 1.37. Apply Theorems 1.13, 1.17, and 1.20 to the equation 

1 1 + ¢ax2(t) 
X (t + 1) = bo l ( ) l 2( ) X (t) + SoX (t) + ex t + ax t 

and draw its bifurcation diagram G for each of the following sets of pa­
rameters: 

(a) e = 1, a= 1, ¢ = 4, and s0 = 0.5; 

(b) e = 2, a= 3, ¢ = 3, and s0 = 0.5; 

(c) e = 3, a= 0.5, ¢ = 2, and s0 = 0.5. 

Exercise 1.38. In a first course on ordinary differential equations, stu­
dents typically encounter the so-called logistic differential equation x' = 
r (1 - x/K) x and learn to calculate the formula 

ifx0 =f. K 

if Xo = K 

for the solution of the initial value problem x (0) = x0 > 0. Evaluat­
ing this formula at the discrete sampling times t E Z+, we obtain a se­
quence x (t). Show that this sequence satisfies the discrete logistic equa­
tion (1.17) with b0 = e' and e = (b 0 - 1) /K. 
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Exercise 1.39. Assume f : I ➔ I is continuous on an open interval 

I= {x ER : 0 < x < /3 ::S: +oo}. 

(a) Prove that if x (t) is a solution of the difference equation 
x (t + 1) = f (x (t)) that converges to a limit x* as t ➔ oo, 
then x* is an equilibrium. 

(b) Assume f (x) has a fixed point Xe E I and that f (x) satisfies 
the following two conditions for all x E I : (i) x < Xe implies 
x < f(x) < Xe and (ii) x > Xe implies f(x) < x. Prove that Xe 

is globally attracting on I. (HINTS: First show that x (0) < Xe 

yields an increasing sequence that satisfies x (t) < Xe for all t. 
Second, show that if x (0) > Xe, then either x (t) is a decreasing 
sequence that satisfies x (t) > Xe for all t or there is a time t* 
after which x ( t) ::S: Xe is increasing for all t ;::: t*.) It is known 
that if Xe is globally attracting, then it is stable (Theorem 4. 7 
in [62]); thus, under the conditions (i) and (ii), Xe is globally 
asymptotically stable on I. 

(c) Show that (i) and (ii) from part (b) hold if oxf (x) > 0 and 
o;f (x) < o on I. 

(d) Use (c) to show that when r0 > 1, the positive equilibrium of 
the discrete logistic equation (1.17) is globally asymptotically 
stable. 

(e) Use (c) to find parameter values b0 = r0 and e in the Ricker 
equation (1.25) for which the positive equilibrium is globally 
asymptotically stable. 

Exercise 1.40. Apply Theorems 1.25 and 1.26 to the equations 

1 
x (t + 1) = b0 1 ( ) x (t) + s0 x (t) and + ex t 

1 
x (t + 1) = b0 x (t) + s01 ( / (t). + ex t 

Exercise 1.41. Consider the following definitions: a p-cycle Xi, Xz, • • • xP 
of the difference equation (1.21) is 

(a) locally stable if to any real number 1: > 0 there corresponds a 
real number 8 (1:) > 0 such that I:f;l Ix (i) - xi I < 8 ([) implies 

I:~~1:-1 Ix (i) - xii <£for all t E Z+, and it is unstable if it is 
not locally stable; 
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(b) attracting if there exists a real number o* > O such that 
._.p-1 I c·) I s-*. 1· i· ._.tp+p-1 I c·) I - o· L,i=O X l - Xi < u lmp leS lm1--,+oo L,i=tp X l - Xi - , 

(c) locally asymptotically stable (or simply stable) if it is both 
locally stable and attracting. 

Prove that a p-cycle is stable (or unstable) by these definitions if and 
only if x0 is a stable (or unstable) equilibrium of the pth composite equa­
tion (as defined in Definition 1.8). 

Exercise 1.42. Show that as a function of x > 0, the expression in (1.37) 
is either monotonic or has two critical points. (HINT: Show the deriv­
ative with respect to x is a quotient whose numerator is a fourth order 
polynomial in x and apply Descartes' Rule of Signs.) 

Exercise 1.43. Use a computer to calculate the equilibria for the spruce­
budworm equation (1.36) with parameter values (1.38) and the six values 
of b0 used in Figure 1. 7. Then numerically calculate oxf (x) and use 
it, with the Linearization Principle, to determine the stability of each 
equilibrium. 





Chapter 2 

Linear Matrix Models for 
Structured Populations 

In most biological populations, there is diversity, indeed often a great 
deal of diversity, among individual organisms. This diversity can be 
found in innumerable physiological and behavioral characteristics, such 
as age, weight, body size, gender, life cycle stages, mobility, food require­
ments, foraging efficiency, genetics, state of health (e.g., in the presence 
of a disease) ... the list is virtually endless. Any of these characteristics, 
or set of characteristics, can play a significant role in an individual's fit­
ness and, as a result, the dynamics of the population as a whole. At 
the opposite extreme of using an aggregated state variable to account for 
all individuals (as in the models found in Chapter 1), one could envi­
sion a model in which every individual organism is a state variable. In 
this case, the methodology that dynamically tracks every individual is 
called individual-based modeling. These kinds of models obviously in­
volve, for a population of any significant size, a very large number of 
state variable equations and, as a result, are in general analytically in­
tractable. Their study relies on computer simulations, which makes it 
difficult to obtain a thorough and rigorous understanding of the model's 
implications and predictions. An intermediate point of view and mod­
eling methodology is to specify a finite set of categories or classes of in­
dividuals, defined with regard to characteristics of importance for the 

43 
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population to be studied, and to track the dynamics of each class. A ba­
sic example is to track a finite set of classes based on chronological age. 
These kinds of models are called structured population models and 
they are the main subject of the remaining chapters. 

Following the format of Chapter 1, we first consider (in this chap­
ter) linear structured population models in which vital fertility and sur­
vival rates are constant over time and then consider nonlinear models 
(in Chapter 3) in which they are dependent on population density. In 
both chapters, we will be guided by the basic properties of linear and 
nonlinear models that we discovered in Chapter 1 for unstructured pop­
ulation models. For example, we saw in Section 1.1 that linear difference 
equations predict either exponential decay ( to extinction) or unbounded 
growth except when r0 exactly equals 1, results that are represented in 
the vertical bifurcation diagram in Figure 1.1. For nonlinear equations, 
on the other hand, the bifurcation diagram is (in general) no longer ver­
tical, but is bent in such a way as to allow sustained survival at a finite 
equilibrium for some values of r0 (as in Figures 1.2 and 1.3). We will 
find (among many other things) that these two basic features remain 
basically in tact for matrix models of structured populations as well. 

2.1. Modeling Methodology 

Suppose each individual in a population is placed in exactly one of 
finitely many classes and let xi (t) be the population density of the ith 
class at time t E Z+. We follow each class density xi (t) through time by 
using the accounting principle (1.1). We consider populations closed to 
immigration or seeding, in which the new arrivals in our basic modeling 
accounting procedure (1.1) are newborns only. For each }-class individ­
ual alive at time t, let Jij :2: 0 denote the number of i-class newborns it 
produces and that are present at the next census time t + 1. Then the 
new i-class arrivals in total equal ~;:1 Jijxj (t), where mis the number 
of classes. Next we let Tij denote the fraction of }-class individuals alive 
at time t that are alive and in the ith class at time t + 1. Thus, rij entails 
both the probability that a }-class individual survives and the probability 
that it moves to class i. Then by (1.1) 

m m 

(2.1) Xi (t + 1) = ~ jijXj (t) + ~ TijXj (t) 
j=l j=l 
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for each i = 1, 2, • • • , m, where 

(2.2) fij ~ 0, 0 ::::; Tij ::::; 1, and 
m 

'°'r--<1 LJ l] -

i=l 

45 

for all i and j = 1, 2, • • • , m. The latter inequality holds because the total 
number of j-class individuals that survive tot+ 1, namely ~;:'.,1 Tijxj (t), 
must be less or equal to the number xj (t) that was present at time t. 

We can write all the equations (2.1) more concisely by using matrix 
notation: 

(2.3) x(t + 1) = Px(t), 

where x(t) = col(xlt)), P = F + T, and 

F = [fij] and T = [rij] 

are mxm matrices. The matrix P = [Pij], where Pij = fij +rij, is called 
the population projection matrix. We call P, F, and T nonnegative 
matrices because all their entries are nonnegative real numbers. We 
denote these matrix properties by writing P ~ Dmxm, F ~ Dmxm, and 
T ~ Dmxm, where Dmxm is them x m matrix of zeros. We call F the 
fertility matrix and T the transition matrix. 

Note that each initial condition x(O) produces a unique sequence 
x(t) by repeated application of the matrix difference equation (2.3). 
We call this sequence a solution of the matrix equation. Since the pro­
jection matrix Pis nonnegative, the solution of an initial value problem 
with a nonnegative initial condition x(O) E R".;:2 remains nonnegative 
(i.e., x(t) E R".;:2 for all t E Z+). Thus, each nonnegative initial condition 
is associated with a unique nonnegative solution. 

The iconic example of a structured population is the Leslie model for 
an age-structured population [100], [101]. In this model, individuals are 
classified by a finite set of age class of equal length and the population 
is censused sequentially at time intervals equal to this length, which we 
take without loss in generality to be 1. Newborns belong to class i = 1 
so that 

(2.4) 

0 0 

bm-1 bm 
0 0 
0 0 

0 0 
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and surviving individuals necessarily advance to the next age class so 
that T is the sub-diagonal matrix 

I 0 

0 0 0 
S1 0 0 0 

(2.5) 
T- : 

S2 0 0 

0 Sm-1 0 

where, for notational simplification, we have defined 

Matrices (2.4) and (2.5) yield the Leslie matrix [100], [101] 

b1 b2 bm-1 bm 

S1 0 0 0 

(2.6) 
P=F+T= 0 S2 0 0 

0 0 Sm-l 0 
with bi ~ 0 and O < si :S: 1 

in which bi is the number of newborns (class 1 individuals) produced by 
age class i individuals (per unit time) and si is the fraction of (probability 
that) an age class i individual survives a unit of time. 

The Leslie model with projection matrix (2.6) assumes no individual 
lives beyond the mth age class, which accounts for the O appearing in the 
lower-right corner in the transition matrix (2.5). For example, in human 
demographic models, the age classes are typically 10 years in length so 
that in a Leslie model of dimension m it is assumed no individual is older 
than 10m years. Such a Leslie model with m = 10 assumes no individ­
ual lives past age 100. Leslie models arise in applications that redefine 
the mth class to be individuals of age older than m - I units, which al­
lows individuals to live to any age. The modified transition matrix has a 
positive survival probability sm in its lower-right corner 

(2.7) 

0 0 
S1 0 

T = 0 Sz 

0 
0 
0 

0 
0 
0 
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The resulting projection matrix 

(2.8) 

0 0 Sm-1 Sm 

with bi 2 0, 0 < Sm :::; 1, and 0 < si :::; 1 for i = I, 2, · · · , m - I 

is called an extended Leslie matrix. 

Instead of using chronological age, suppose we structure a popula­
tion according to some measure of body size (height, girth, weight, etc.). 
We choose a time unit so that an individual can advance at most one size 
class per unit time. We also assume that a surviving individual cannot 
shrink in size and that all newborns are in the smallest size class. The 
fertility matrix Fis again given by (2.4), but the transition matrix Tis 
now a bidiagonal matrix 

T11 0 0 0 0 

Tz1 Tzz 0 0 0 

(2.9) T= 
0 T3z T33 0 0 

0 0 0 Tm-1,m-l 0 
0 0 0 Tm,m-1 Tmm 

where Tii is the probability a surviving i-class individual remains in the 
i-class and Ti+l,i is the probability it grows to the next larger size class. 
The resulting projection matrix 

b1 + T11 b2 b3 bm-1 bm 

T21 T22 0 0 0 

(2.10) P= 
0 T32 T33 0 0 

0 0 0 Tm-1,m-l 0 
0 0 0 Tm,m-l Tmm 

defines the Usher matrix model [124] (or the standard size struc­
tured model [13]). Note that, from a mathematical point of view, a 
Leslie model is a special case of the Usher model with rii = 0. 
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Example 2.1. In [111], the 3 x 3 Leslie matrix 

(2.11) I o o 1.893 l 
P = 0.6310 0 0 

0 0.0631 0.6272 

is used in an application to the stingray species Dasyatis violacea. The 
time unit is one year, and individuals are juveniles (nonreproducing) for 
the first two years. The 8 x 8 Usher matrix 

0 0 0 0 0 0.042 0.069 0.069 
0.716 0.567 0 0 0 0 0 0 

0 0.149 0.567 0 0 0 0 0 

(2.12) P= 0 0 0.149 0.605 0 0 0 0 
0 0 0 0.235 0.560 0 0 0 
0 0 0 0 0.225 0.678 0 0 
0 0 0 0 0 0.249 0.851 0 
0 0 0 0 0 0 0.016 0.860 

is used to study the population dynamics of the endangered desert tor­
toise (Gopherus agassizii) by the authors in [60]. Here, the time unit is 
one year, and the size classes are defined as: yearling, juvenile 1, juve­
nile 2, immature 1, immature 2, subadult, adult 1, and adult 2. Finally, 
in [131], the 7 x 7 projection matrix 

0 0 0 0 0 0 431 
0.748 0 0 0 0 0 0 

0 0.966 0 0 0 0 0 
(2.13) P= 0.008 0.013 0.010 0.125 0 0 0 

0.070 0.007 0 0.125 0.238 0 0 
0.002 0.008 0 0.038 0.245 0.167 0 

0 0 0 0 0.023 0.750 0 

is used to study the population dynamics of wild teasel (Dipsacus 
sylvestris) with a one-year time unit. Here, the classification scheme 
is based on the life cycle stages: new seeds, I-year dormant seeds, 2-
year dormant seeds, small rosettes, medium rosettes, large rosettes, and 
flowering plants. 

A basic question to ask about each of these matrix models is whether 
the population is growing or whether it is decreasing and in danger of 
extinction. We will learn techniques for answering this question in 
Section 2.2. □ 

In addition to the matrix formulation of a structured population dy­
namic model, as carried out previously, we can geometrically represent 
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(A) 

(B) 

\f r,,,111 

Figure 2.1. The life cycle graphs associated with (A) the Leslie age­
structured model and (B) the Usher size-structured model. 
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the model by means of a directed graph, called the life cycle graph. We 
draw a circle (a node) for each class and then draw a directed arc from 
circle i to circle j if a transition from class i to class j is possible or if in­
dividuals in class i produce offspring in class j, that is to say if the entry 
Pij from the projection matrix is positive. Figure 2.1 shows the life cycle 
graphs associated with the Leslie and Usher matrix models. 

As a final remark in this introductory section, we point out that a 
projection matrix is called irreducible if, in its corresponding life cycle 
graph, there is a path from every node to every other node. (Such a graph 
is called strongly connected.) In this case, every class is reachable from 
every class by either transition or births. In this book, we consider only 
irreducible projection matrices, as they are overwhelmingly the ones that 
arise in applications. 

As an example, we obtain the following result from inspection of the 
life cycle graphs in Figure 2.1. 

Theorem 2.2. Leslie and Usher projection matrices are irreducible if(and 
only if) si > 0 for all i and bm > 0. 

Throughout this and the remaining chapters, we use the a super­
script T to denote the (complex) transpose of a vector or a matrix, and 
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we use the so-called L1 vector norm 

llvll = ~:1 lvil 
for v E Rm. (See the Table of Symbols.) Thus, in applications of a 
matrix equation (2.3) with a nonnegative projection matrix, llx(t)II 
~;: 1 xi (t) is the total population size. 

2.2. The Fundamental Theorem of Demography 

By a straightforward induction argument (Exercise 2.24 ), one can derive 
the formula 

(2.14) 

for the solution of the matrix equation (2.3) with projection matrix P. 

Example 2.3. Consider the projection matrix 

I o o 1.893 l 
P = 0.6310 0 0 

0 0.0631 0.6272 
(2.15) 

from the stringray application in Example 2.1. If we start with a popula­
tion consisting of only 10 adults 

we obtain by iteration of the matrix equation (2.3) the demographic vec­
tors (rounded to 4 significant digits): 

x(l) = I 18~93 ] , 
6.272 

x (3) = I ;_·::~ ] , and 
3.221 

x (2) - I 
x(4)-I 

11.87 l 
11.95 , 
3.934 

6. 097 l 
4.699 . 
2.493 

Notice that the component population densities appear to be decreasing 
with time, as do the total population densities: 

llx (1)11 = 25_20, llx (2)11 = 27.75, 
llx (3)11 = 18.16, and llx (4)11 = 13.29. 
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Using formula (2.14), we can see further evidence of this from 

x(lO) = [ o\\
6
i5 ] , 

0.4670 

[ 
4.606 X 10-3 l 

x(30) = 3.833 X 10-3 , 

1.845 X 10-3 

and their total population sizes 

and 

x(20) = [ 

x(4-0) = [ 

7.328 X 10-2 l 
6.098 X 10-2 , 

2.935 X 10-2 

2.894 8 X 10-4 l 
2.4089 X 10-4 

1.1596 X 10-4 

llx (10)11 = 2.603, llx (20)11 = 1.636 x 10-1 , 

llx(30)II = 1.028 x 10-2, and llx(40)II = 6.463 x 10-4 , 
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Another interesting observation to make from these calculations con­
cerns the normalized population distribution x(t) / llx(t)II (which give 
the proportions of the population in each of the three classes at each time 
t). Despite the fact that the population appears to be going extinct, the 
normalized population distribution appears to stabilize: 

x(l) [ 
llx(l)II = 

x(3) [ 
llx(3)11 = 

X (10) [ 
llx(lO)II -

X (30) [ 
llx(30)II -

0.7511 
0 

0.2489 
0.4101 
0.4126 
0.1774 
0.4478 
0.3728 
0.1794 
0.4479 
0.3727 
0.1794 

l 
l 
l · 
], and 

x(2) [ 0.4278 l 
-II ( )II = 0.4304 , 

X 2 0.1418 

x(4) [ 0.4588 l 
-11 ( )II = o.3536 , 

X 4 0.1876 

x(20) [ 0.4479 l 
llx(2o)II - 0·3727 ' 

0.1794 

x(40) [ 0.4479 l 
llx(40)II - 0·3727 · 

0.1794 

As we will see in Theorem 2.7, this is not a coincidence. □ 

Suppose them x m projection matrix Pis diagonalizable (i.e., has m 
linearly independent right eigenvectors vi and m linearly independent 
left eigenvectors wt). Then we can write any initial condition x ( 0) as a 
linear combination of the eigenvectors: 

m 

(2.16) x (0) = L Ci Vi, 
i=l 
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where the coefficients ci are given by the formula 

Wf x(O) 
Ci= T 

wivi 
(2.17) 

(See Exercise 2.25.) By a repeated application of (2.14), we obtain a so­
lution formula 

m 

(2.18) x(t) = L ci,:J,fvi, t E Z+. 
i=l 

expressed in terms of the eigenvalues and eigenvectors. From this for­
mula, we see that the asymptotic dynamics of the solution x(t) depends 
on asymptotic dynamics of the exponentials ,1,f. Obviously, as t ➔ oo, ,1,( 
tends to O if I Ai I < 1 or increases without bound if IAi I > 1. 

If P has complex eigenvalues and eigenvectors, then they appear in 
complex conjugate pairs. Since the sum of complex conjugates is two 
times their real parts, the solution formula (2.18) will be real valued, 
even when complex eigenvalues occur. 

Example 2.4. Using a computer program, we find that the eigenvalues 
of the projection matrix in Example 2.3 are 

Notice that 

A1 = 0.7583, A2 = -0.06554 + 0.3084i, 

and ,:J,3 = -0.06554 - 0.3084i. 

IA11 = 0.7583 < 1 and IA-2 1 = IA-31 = 0.3153 < 1, 

and it follows from the solution formula (2.18) that limt-+oo x(t) = 0 3 . 

This corroborates the speculation in Example 2.3 that the population 
model predicts extinction. 

Eigenvalues associated with the eigenvalues, normalized so that 
llvill = 1, are (rounded to 4 significant digits) 

v1 = [ ~::~~~ ] , v2 = [ -0.13~}~
5
~.6180i ] , 

0.1794 -0.01093 + 0.05142i 

and v3 = [ -0.13~:~
5
~.6180i l · 

-0.01093 - 0.05142i 
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and we can write the initial condition 

x(O) = [ I~ l 
used in Example 2.3 as x(O) = c1v1 + c2v2 + c3v3 with coefficients 

C1 = 41.42, Cz = -29.38 - 18.74i, 

and c3 = -29.38 + 18.74i. 
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Using the solution formula (2.18), we rewrite the normalized population 
distribution 

as 

x(t) C1AiV1 + CzAtv2 + C3A~V3 

llx(t)II f fc1,1,{v1 + c2,1,tv2 + C3A~v3f f 

x(t) 
llx(t)II 

C1V1 + Cz (fi y Vz + C3 (~ y V3 

llc1V1 + Cz c~ y Vz + C3 c~ y V311 

and find, since 

11: I= 11: I= 0 .4158 < 1• 

that 
lim x(t) = C1V1 = V1 

hoo llx(t)II llc1v1II · 
This corroborates the speculation in Example 2.3 that normalized 
population distribution stabilizes and in fact approaches the eigen­
~ctor ~. □ 

To make any general pronouncements about the asymptotic dynam­
ics of the matrix equation (2.3) with regard to the eigenvalues and eigen­
vectors of the projection matrix P, we need more information about the 
eigenvalues and eigenvectors of nonnegative, irreducible matrices. The 
list of facts in the following Theorem 2.5 come from a large collection 
of known facts about nonnegative matrices called Perron-Frobenius 
theory (see for example [7], [80], [125]). An eigenvalue Ai of a matrix 
is called dominant if IAil ~ IAjl for all j. Recall an eigenvalue is sim­
ple means that it is an algebraically simple (i.e., nonrepeated) root of the 
matrix's characteristic polynomial. (An algebraically simple eigenvalue 
is necessarily a geometrically simple eigenvalue [i.e., its eigenspace is 
one dimensional].) 
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Theorem 2.5. 

(a) A nonnegative matrix has a real nonnegative, dominant eigen­
value and associated nonnegative right and left eigenvectors. 

(b) If a nonnegative matrix is irreducible, then the dominant eigen­
value is positive and simple, and it has associated positive right 
and left eigenvectors. Moreover, no other eigenvalue has a non­
negative eigenvector. 

Remark 2.6. If Ai are the eigenvalues of a matrix M, then 

p [M] = max{IAil} ~ 0 

is called the spectral radius of the matrix. For a nonnegative matrix M, 
Theorem 2.5 implies the spectral radius p [M] is in fact an eigenvalue; it 
is often called the Perron eigenvalue. We assume the eigenvalues are or­
dered so that A1 = p [M]. In population models, the dominant, Perron 
eigenvalue of the projection matrix Pis often also denoted by r0 = p [M]. 

Suppose the projection matrix Pin the matrix equation (2.3) is non­
negative and irreducible, and let v and wT denote positive right and left 
eigenvectors associated with the dominant eigenvalue r0 > 0. Without 
loss in generality, we order the eigenvalues Ai so that A1 = r0 , v 1 = v, 
and wf = wT and then write the solution formula (2.18) as 

m 

(2.19) x(t) = c1r&v + L CiAfvi. 
i=2 

Note that if x( 0) is a nonnegative and nonzero initial condition, then the 
coefficient c1 = wT x(O) > 0. If the dominant eigenvalue A1 = r0 , which 
by definition satisfies r0 ~ I Ai I for all i i- 1, happens to satisfy the strict 
inequalities r0 > I Ai I for all i i- 1, then it is called strictly dominant 
and the matrix is then called primitive. Primitive population projec­
tion matrices play a leading role in matrix models, although imprimi­
tive projection matrices do arise in applications (as we will see). Here 
is a basic theorem about the asymptotic dynamics of solutions of linear 
matrix models with primitive projection matrices and about their nor­
malized population distributions x(t)/ llx(t)II (which consist of the 
fractions of the total population llx(t)II in each class). 

Theorem 2. 7. The Fundamental Theorem of Demography or the 
Strong Ergodic Theorem. Assume the projection matrixP in the matrix 
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equation (2.3) is primitive. If r0 > 0 is the strictly dominant eigenvalue 
and wT and v are associated left and right, positive eigenvectors, then for 
all solutions with nonzero, nonnegative initial condition x(0) E R';z, 

lim x(;) = wT x(0)v > 0 and 
t---->co ro 

lim x( t) = ~ 
hoo llx(t)II llvll' 

We give a proof of this theorem under the assumption that Pis diag­
onalizable (i.e., has m independent eigenvectors). For a proof when this 
is not the case, see [82]. 

Proof. Note that r0 > l.i!.i I for all i =I- 1 implies limt----> 00 (.i!.i/r0i = 0 for all 
i =I- 1. The first limit follows immediately from 

obtainedfrom(2.19). To verify the second limit, we divide the numerator 
and denominator of the normalized distribution 

by r6 to obtain 

x(t) 

llx(t)II 

x(t) 

llx(t)II 

from which follows 

lim x(t) = ~ = ~ 
t---->oo llx(t)II llc1vll llvll 

since c1 = w · x(0) > 0. □ 

Theorem 2. 7 says several important things concerning the long-term 
fate of a population governed by equation (2.3) with a primitive projec­
tion matrix P. From 

lim llx(;)II = wT x(0) llvll > 0, 
t---->oo ro 
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we see that there are three case for the asymptotic dynamics: 

lim llx(t)II = wT x(O) llvll ifro = 1 . ! 0 ifO < r0 < 1 

t---->oo +oo if 1 < ro 

These are the same three possibilities as we found for scalar (m = 1) 
linear equations in Chapter 1 (see equation (1.6)). Geometrically, we 
have the same (vertical) bifurcation diagram as in Figure 1.1, but in this 
case, the plot would include the total population size at equilibria llxell 
against r0 . For r0 =f. 1, the total population llx(t)II is proportional to rJ for 
large t, and we call r0 the population growth rate. 

Another important fact that follows from Theorem 2. 7 is that, re­
gardless of whether the population is growing (r0 > 1) or decaying (r0 < 
1), the proportions in each class stabilize to the normalized eigenvector 
v/ llvll as t ➔ oo. This normalized distribution (whose entries form a 
partition of unity) is historically called the stable demographic distri­
bution. (The word "stable" here is not to be confused with "asymptoti­
cally stable" in Definition 1.8.) 

Before looking at some examples, we list some methods for deter­
mining the irreducibility and primitivity of a nonnegative matrix in the 
following theorem. A path in a life cycle graph that begins and ends at 
the same node is called a loop. 

Theorem 2.8. Suppose M is a nonnegative matrix. 

(a) M is irreducible if and only if (Im + M)m-l is a positive matrix 
(where Im is the m x m identity matrix). 

(b) M is primitive if and only if there exists an integer p ;::: 1 such 
that MP is a positive matrix. 

( c) If M is irreducible, then it is primitive if either of the following 
holds: 

(i) There exists a positive diagonal entry. 
(ii) 1 is the greatest common divisor of the lengths of its loops. 

Remark 2.9. It turns out that if Mis primitive, thenMm2- 2m+ 2 is positive. 
This means the smallest integer for which MP is positive is less than or equal 
to m2 - 2m + 2, so that when applying this power test for primitivity in 
Theorem 2.S(b), one needs consider powers no higher than m2 - 2m + 2. 

(This fact, by the way, implies that each class is connected to any other class 
by a path of length no longer than m2 - 2m + 2.) 
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Example 2.10. The Leslie and Usher matrices (2.11) and (2.12) intro­
duced in Example 2.1 as matrix models for stingray and desert tortoise 
populations, respectively, are both irreducible by Theorem 2.2. An ap­
plication of part (i) in Theorem 2.S(c) with M = P shows that both of 
these projection matrices are primitive. The matrix (2.13) in Example 
2.1, used to model wild teasel, is neither a Leslie nor an Usher matrix. 
With the aid of a computable algebra program, we can determine its 
irreducibility by applying Theorem 2.S(a) with m = 7 and M = P to 
find that 

169.3 78.32 2.926 536.7 2599 11300. 33130 
57.50 36.54 0.7111 218.9 1227 5807 9979 
22.37 18.16 1.098 68.70 484.6 3744 6646 

6 
(17 + P) = 1.147 0.864 6 0.09124 5.504 21.54 135.1 263.6 

6.280 3.883 0.09959 24.49 134.8 676.5 1196 
1.166 0.6815 0.02236 4.314 24.38 162.3 319.9 
0.621 0.2748 0.01245 1.906 9.628 62.03 169.3 

is a positive matrix. Then an application of part (i) in Theorem 2.S(c) 
shows this projection matrix is primitive. □ 

Example 2.11. A Juvenile-Adult Model. A basic structuring of many 
biological populations can be based on the two classes: juveniles x1 and 
adults x2 • If we assume the attainment of reproductive maturity corre­
lates with chronological age and use the maturation period as the unit 
of time, then we have the 2 x 2 fertility matrix 

where b2 is the per adult number of juveniles produced per adult (per 
unit time). Assuming juvenile status cannot be again attained by a ma­
ture adult, we have the transition matrix 

where s1 and s2 are juvenile and adult survival probabilities, 
respectively. Clearly, the population cannot survive if b2 = 0 (there 
is no reproduction) or if s1 = 0 (no juvenile reaches maturity). The 
projection matrix of this juvenile-adult matrix model is the m = 2 
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(A) lteroparous Q .... E:-:>0~ 
(B) Semelparous Q ... E-:-:)-0 

Figure 2.2. The life cycle graphs associated with the juvenile-adult 
projection matrix (2.20). The iteroparous case (A) is primitive, and 
the semelparous case (B) is imprimitive. 

dimensional Leslie matrix (2.6) 

(2.20) 

It is easy to see that from the life cycle graph in Figure 2.2 that P is irre­
ducible ( there is a path connecting the juveniles to adults and vice versa), 
which we can also verify from Theorem 2.S(a) and the calculation 

A calculation shows 

By Theorem 2.S(a), we arrive at the following conclusions. 

The juvenile-adult model projection matrix (2.20) is: 
• primitive if s2 > O; 
• imprimitive if s2 = 0. 

We refer to the case s2 > 0 as the iteroparous juvenile-adult model 
since it implies an adult can have multiple reproductive episodes. The 
case s2 = 0, when an adult has only one reproductive time unit, we call 
the semelparous juvenile-adult model. 
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For an m = 2 dimensional projection matrix, algebraic formulas for 
its eigenvalues are analytically tractable by means of its quadratic char­
acteristic polynomial model. Primitivity can also be determined by in­
vestigating the eigenvalues, which for the juvenile-adult projection ma­
trix (2.20) are real: 

Ai = ~S2 + ~✓ s~ + 4b2Si and A2 = ~S2 - ~✓ s~ + 4b2Si. 

It is easy to see that Ai > 0 and Ai > A2 • It is left as an exercise to show 
that Ai ~ IA2 I so that 

1 1 / 2 (2.21) r0 = 2s2 + 2y s2 + 4b2si 

and that A1 > IA2 1 (i.e., Pis primitive) if and only if s2 > 0. □ 

The juvenile-adult in Example 2.11 is the lowest-dimensional case of 
the Leslie model with projection matrix (2.6). Leslie matrices of higher 
dimensions are widely used in population modeling (in, for example, 
human demography). The next theorem follows from parts (i) and (ii) 
of Theorem 2.S(c). 

Theorem 2.12. Consider an irreducible extended Leslie matrix (2.8) with 
si > 0 for 1 s i s m - 1 and bm > 0. 

(a) It is primitive if either bi > 0 or Sm > 0. 

(b) If both bi = Sm = 0, then it is primitive if (and only if) the great­
est common divisor of the set of indices for which bi > 0 equals 
1. For example, it is primitive if two consecutive classes are fertile 
(i.e., there exists an i such that bi and bi+i are both positive). 

Example 2.13. A Leslie model with bi = 0 for all i = 1, 2, • • • , m - 1 
can be used to describe a population whose juvenile stages pass through 
m - 1 stages before reaching maturity at age m. These stages could be, 
for example, egg, larval instars, and pupal stages in an insect. We see 
from Theorem 2.12 that such a Leslie matrix is primitive if and only if 
Sm > 0, in which case the population is iteroparous. 

An example is the linear LPA model (LPA stands for larva-pupa­
adult) 

(2.22) ~ ] with b3 > 0 and 0 < si, s2 s 1, 
S2 S3 

0 
0 
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which is primitive if and only if s3 > 0. Another example is the imprim­
itive Leslie model 

0 0 0 bm 
S1 0 0 0 

(2.23) P= 0 Sz 0 0 with bm > 0 and O < si ::; 1, 

0 0 Sm-1 0 

which is called a semelparous Leslie model. Nonlinear versions of 
these two models have played significant roles in the study of certain 
insects-flour beetles (various species of the genus Tribolium) and peri­
odical cicadas (various species of the genus Magicicada), respectively­
as we will see in Chapter 3. □ 

2.3. The Reproduction Number R 0 

If the projection matrix P in the linear model (2. 3) is primitive, then the 
inherent growth rate r0 of the population is the strictly dominant eigen­
value (the Perron eigenvalue) of P. By Theorem 2.7, the population will 
grow (exponentially without bound) or decay (to extinction) if r0 > 1 or 
r0 < 1, respectively. The eigenvalues of P are the roots of its character­
istic polynomial, which has degree m, and as a result, it can be difficult 
to calculate r0 for large m. If Pis a numerical matrix, then computer 
programs are available for this purpose, but if P contains entries that are 
not numerically specified, then an algebraic formula for r0 in terms of 
the entries in Pis in general impossible to obtain for m ~ 5. Alterna­
tively, there is another quantity that can be used to determine popula­
tion growth or decay. This quantity is often analytically tractable, even 
for large values of m, and also has a biological meaning that is informa­
tive and amenable to calculation from data. We encountered the repro­
duction number R0 in Chapter 1 for the case m = 1. In this section, we 
define and learn how to calculate R0 for structured models of dimension 
m > 1. 

2.3.1. The Definition and Calculation of R0 • Consider an initial dis­
tribution x(O) that consists of only newborns. The distribution of sur­
vivors from an initial condition x(O) after one time step is Tx(O), after 
two time steps is T(Tx(O)) = T2x(O), and after i times steps is Tix(0). 
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The distribution of newborns that will be produced by the initial new­
born distribution Om #- x(O) E Rir is Fx(O). After another time step, the 
initial distribution becomes Tx(O), which will produce the distribution 
FTx(O) of newborns; after another time step, the initial distribution be­
comes T2x(O), which will produce the distribution FT2x(O) of newborns; 
and so on. Over the lifetime of the newborns in the initial distribution, 
the distribution of accumulated newborns for which they are responsi­
ble is 

(2.24) Fx(O) + FTx(O) + FT2x(O) + ··· = F (~ Ti) x(O) 

provided the series 

00 

Im + T + T2 + ... = L Ti 
i=O 

converges. We assume the spectral radius of the nonnegative transition 
matrix T satisfies p (T) < 1. Since p (T) is the dominant eigenvalue of T 
(cf. Theorem 2.S(a)), this assumption implies 1 is not an eigenvalue of 
T. Thus, Im - Tis nonsingular and (Im - T)-1 exists. In fact 

00 

(2.25) (Im - T)-1 = L Ti 
i=O 

(see Exercise 2.31), and as a result, the distribution of accumulated new­
borns (2.24) equals 

Fx(O) + FTx(O) + FT2x(O) + ... = F (Im - T)-1 x(O). 

If we view this distribution of all newborns, obtained from the initial 
distribution of newborns x(O), as a new generation, then we see from 
this that the matrix F (Im - T)- 1 maps a generation of newborns to the 
next generation of newborns. For this reason, F (Im - T)- 1 is called the 
next generation matrix. 

Definition 2.14. Assume that the fertility and transition matrices sat­
isfy (2.2) and that p (T) < 1. The reproduction number associated 
with the projection matrix P = F + T is the spectral radius of the next 
generation matrix: 
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We expect that repeated generations will grow or decay according to 
whether R0 is greater than or less than 1. In Chapter 1, we observed that 
this is indeed true for the case m = l since r0 and R0 are on the same 
side of 1. In [39], this is proved form> 1. The following theorem, found 
in [104], provides a slightly stronger version of this fact. 

Theorem 2.15. Assume p (T) < 1 for a nonnegative matrix model P = 
F + T satisjying (2.2). Then one of the following holds: 

1 < r0 :s; R0 , 0 :S: R0 :S: r0 < 1, or r0 = R0 = 1. 

If in addition Pis irreducible, then R0 > 0. 

Example 2.16. For the juvenile-adult model in Example 2.11, we have 
that 

F = [ O b2 ] and T = [ O O ] 
0 0 S1 S2 

with b2 > 0, 0 < s1 :S: 1, and 0 :S: s2 < 1 

and that the projection matrix P = F +Tis primitive. The next genera· 
tion matrix is 

F (Im - T)- 1 = [ ~ b2 ] ([ ~ ~ ]- [ 0 s~ ])-1 
0 S1 

= [ 
0 b2 ][ 1 0 ] 0 0 

1 1 
S1- -

1-Sz 1-Sz 

= [ 
1 b _1_ ] · b2S1-1 --Sz 2 1-Sz 

0 0 

The eigenvalues of this matrix are 0 and 

1 
(2.26) Ro= b2S1-1 -. 

- S2 

By Theorem 2.15, the population grows without bound (i.e., r0 > 1) if 
R0 > 1 and decays to the origin (i.e., r0 < 1) if R0 < 1. 

In this particular example, these conclusions can also be established 
directly from the formula for r0 (2.21) in Example 2.11. □ 

Notice in Example 2.11 that the 2 x 2 fertility matrix has a row of 
zeros and, as a result, so does the next generation matrix F(Im - T)-1 . 

In fact, this is true for fertility and next generation matrices of any di­
mension m ~ 2. That is to say, if all newborns belong to one and only one 
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class, which without loss in generality we can label as the first class, then 
all but the first row in F consist entirely of zeros. It follows that this is 
also true of the next generation matrix F (Im - T)-1 , which means that 
0 is an m - 1 times repeated eigenvalue and that the remaining eigen­
value R0 appears in theupper-leftcornerofF(Im -T)-1. A result of this 
observation is that R0 equals the inner product of the first row 

ff = [ f11 f12 ·.. f1m ] 

ofFwith the first column of (Im -T)-1, which we denote byn1. Then 

(2.27) 

and the main task involved in calculating R0 is to obtain the first column 
Il1 of (Im - T)-1 . 

For example, when m = 2, the first row of 

p = [ fb1 fb2 ] 
is 

ff = [ !11 !12 ] , 

and the first column of 

is 

(Im-T)-1=[ l-r11 
-r21 

1- '22 

Thus, for an m = 2 dimensional matrix model with a single newborn 
class, the reproduction number is 

R0 = ff Il1 

_ f 1 - r22 f T21 

- 11 (1 - r11) (1 - <22) - <21 r12 + 12 (1 - r11) (1 - <22) - <21 r12 · 

Here is an m-dimensional example. 

Example 2.17. The first row of the fertility matrix F in the extended 
m-dimensional Leslie model (2.8) is 

ff = [ b1 b2 · · · bm-1 bm ] . 
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We leave it as Exercise 2.32 to show that the first column in (Im-T)-1 is 

1 

(2.28) 

S1S2 •· · Sm-2 
1 

S1S2 ... Sm-l 1-sm 

From formula (2.27), we obtain the net reproduction number 

(2.29) 
m-1 l 

Ro= :I: b(Jri + bmnm-1 _, 
i=l Sm 

where we have invented, for notational convenience, the notation 

for i = 1 
(2.30) 

for i = 2, 3, • • • , m 

for the probability that a newborn attains the ith age class. As in Exam­
ple 2.11, the term (1 - sm)-1 is the expected amount of time spent in the 
mth class. □ 

Example 2.18. Consider a population that is structured by a juvenile 
class x1 and two different adult classes x2 and x3 with the life cycle graph 
in Figure 2.3. A juvenile matures into an adult of class i = 2 with prob­
ability s21 ::; 1 and into an adult of class i = 3 with probability s31 ::; 1. 
Adults of class i = 2 are semelparous and do not survive a unit of time 
for a second reproductive episode. Adults of class i = 3 are iteroparous 
and have post-reproductive survival probability s33 , where O < s33 < 1. 
If the unit of time is the juvenile time to maturation, the fertility and 
transition matrices are 

F = [ ~ f~z !~3 
] and T = [ r~1 

0 0 0 T31 

0 
0 

where fli > 0 is the per capita number of newborns per i-class adult. 
The projection matrix 
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G /12 0 ./i3 0 X ) X1. E X 
2 •(--- ---~)• 3 

T21 1"31 

Figure 2.3. A structured population with 1 juvenile and 2 adult 
classes, one of which is semelparous and the other of which is 

iteroparous. 
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is irreducible, as can be seen by an inspection of the life cycle graph or 
by Theorem 2.S(a) from the positivity of the matrix 

(Im+Pr-i = [ 
1 f12 f13 r T21 1 0 

T31 0 1 + T33 

= [ 
T21f12 + T31f13 + 1 2f12 2f13 + T3d13 l 2T21 T2if12 + 1 T2if13 

21"31 + T31 T33 T3if12 rf3 + 2T33 + T3if13 + 1 

Pis also primitive since it has a positive diagonal entry (part (i) in The­
orem 2.S(c)). 

To calculate R0 , we note that there is only one newborn class (only 
the first row ofF is a nonzero row), and we can therefore take advantage 
of the formula (2.27) with 

ff=[ 0 f12 f13 ]. 

The first column of (Im - T)-1 is 

and therefore by (2.27), we have 

1 
Ro= f1n1 = f12T21 + f13T31-1---

- T33 

This formula shows R0 is the lifetime expected number of newborns pro­
duced per newborn, summing newborns expected to be produced by adults 
of classes i = 2 and 3. By Theorem 2.15 (note that p (T) = s33 < 1), 
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the population decays to extinction if R0 < 1 and grows exponentially if 
Ro> 1. □ 

In the previous examples, there is only one newborn class, which 
considerably simplifies the calculation of R0 • In general, the analytic 
tractability of calculating R0 is related to the number of newborn classes. 
In principle, a model could contain any number of newborn classes, al­
though in most population models there is only a small number k of 
newborn classes. Mathematically, this means m - k rows of zeros (i.e., 
all entries equal O) in the fertility matrix F. If, without any loss in model­
ing or mathematical generality, we assume all newborn classes are listed 
first in the vector x, then the fertility matrix has the form 

fn f12 f1m 

(2.31) F= 

0 0 0 

It follows that the next generation matrix also has m - k zero rows (i.e., 
has this block matrix form): 

(2.32) F (I - T)-1 - [ N * ] 
m - O(m-k)xk O(m-k)x(m-k) ' 

where N is a k x k nonnegative matrix, Oixj is the i x j matrix of zeros, 
and the asterisk denotes an unneeded submatrix block. The eigenvalues 
of the next generation matrix are those of the diagonal blocks (Exercise 
2.26) and hence consist of O (with multiplicity m-k) and the eigenvalues 
of N. Thus, R0 is the dominant eigenvalue of the matrix N, which if k 
is smaller than m, is what makes the calculation of R0 potentially more 
tractable than the calculation of r0 • 

The next example involves a model with more than one newborn 
class, namely k = 2. 

Example 2.19. Consider a population that is structured into two juve­
nile classes x1 and x2 and a class x3 of adults with the life cycle graph in 
Figure 2.4. Using the maturation period as the unit of time and assuming 
adults produce both types of juveniles (with fertility rates f 12 , f 13 > O) 
and are iteroparous with post-reproduction survival rate r33 , 0 < r33 < 1, 
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0 0 
V 

Figure 2.4. A structured population with 2 juvenile classes and 1 
class of iteroparous adults who produce both types of juvenile off-

spring. 

we have the fertility and transition matrices 

0 
0 0 l 0 , 

T33 

67 

where r 31 and r32 are the juvenile survival rates. The projection matrix 

is irreducible, as can be seen by an inspection of the life cycle graph or 
by Theorem 2.S(a) from the positivity of the matrix 

(Im+P)m-1 - [ 
1 0 

fn r 0 1 f23 

T31 T32 1 + TS33 

-[ 1 + f13T31 f13T32 f13 (1 + T33) l f23T31 1 + f23T32 f23 (1 + T33) 

T31 (1 + T33) T32 (1 + T33) T}3 + f13T31 + f23T32 
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Pis also primitive since it has a positive diagonal entry r33 (part (i) in 
Theorem 2.8(c)). The next generation matrix 

[ o o fn l ([ 1 o o l [ o F (Im - T)- 1 = 0 0 f23 0 1 0 - 0 
0 0 0 0 0 1 T31 

=r 

1 
f13T31-1 T 

- 33 
1 

f23T31-l T 
- 33 

fn-l T 
- 33 
1 1 

0 
f,s 1;;\, . 

This matrix is block diagonal, and its eigenvalues are O and those of the 
submatrix block 

I f13T31-1 
1r f13T32-1 

1r l 
- - 33 - 33 N - 1 1 

f23T31 -1 T f23T32-1 T 
- 33 - 33 

(cf. Exercise 2.26). The eigenvalues ofN are O and 
1 1 

Ro= f13T31-1-- + f23T32-1--. 
- T33 - T33 

By Theorem 2.15 (note that p (T) = r33 < 1), the population decays to 
extinction if R0 < 1 and grows exponentially if R0 > 1. □ 

2.3.2. Interpretation of R0 • In Chapter 1, we saw in them = l dimen­
sional case that R0 is the number of newborns produced per newborn 
per life time. In this section, we consider the meaning of R0 for models 
of dimension m > l in which there are k :'.S: m newborn classes. We 
assume without loss of generality that the k newborn classes are listed 
first in the vector x. This means fertility matrix F has the form (2.31), 
and the next generation matrix has the form (2.32). Consider an initial 
generation consisting only of newborns 

(2.33) x(O)=[ ;(O) ], 
m-k 

where Ok -:j:. n (0) E Rt. From 

F(Im-T)-1 x(O)=[o N 
(m-k)xk 

= [ Nn(O) ] ' 
Om-k 

* 
O(m-k)x(m-k) 

][ n(O)] 
Om-k 
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we see that the next generation of newborns is n (0) Nxk (0). This 
generation gives the next generation 

F(Im -T)-1 [ Nn(O) ] = [ N 2n(O) ] . 
Om-k Om-k 

The resulting sequence of generations 

[ Nin (O) ] ' i = 1, 2, 3, ... 
Om-k 

produces the sequence of generational newborn classes n (i) = Nin (0). 
Since R0 is the dominant eigenvalue of N, we have that 

lim n \O = wT n(0)v 
hoo Rh 

(Theorem 2.7), where wand v are left and right (positive) eigenvectors 
of N associated with R0 . For large i, n (i) ,:;:; wT x(0)vRb and 

lln(i+l)II ~R 
llnCOII ~ 0 ' 

that is to say the total number of next generation newborns divided by 
the total number of previous generation newborns is asymptotically 
equal to R0 . This gives us the interpretation of the reproduction number 
R0 as the average number of newborns produced per newborn per genera­
tion. 

Theorem 2.15 tells us that a population goes extinct if R0 < 1 and 
survives if R0 > 1. This interpretation of R0 makes sense in that new­
borns ( or newborn generations) do not replace themselves when R0 < 1 
but do more than replace themselves when R0 > 1. 

2.4. Sensitivity and Elasticity Analysis 

A structured population whose dynamics are described by the linear ma­
trix equation 

x(t + 1) = Px(t) 

with a nonnegative, irreducible projection matrix P is predicted to go 
extinct if the dominant eigenvalue r0 of Pis less than 1. To avoid extinc­
tion, at least one entry in the projection matrix would have to change so 
as to make r0 greater than 1. This raises the question of which entry in 
P = [Pij] is the most effective in changing r0 • If we consider r0 to be 
a function of a specific entry Pij, one way to address this question is to 
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consider the derivative of Yo with respect to PiJ, which we define to be 
the sensitivity of Yo with respect to PiJ, that is 

dY0 

Sij == dpij' 

and then to compare these derivatives for all entries Pij· 

Let wT and v denote left and right, positive eigenvectors associated 
with Y0 : 

Pv = Y0v and wTP = Yo WT. 

We focus on a specific entry Pij in the projection matrix and consider 
Yo and its associated eigenvectors to be functions of PiJ by writing Yo = 
Y0 (Pij), wT = wT (Pij) and v = v(pij)- Then we have 

(2.34) P(Pij)v(pij) =Yo(Pij)v(piJ 

and 
WT (Pij) P (Pij) = Yo (pij) WT (pij). 

A differentiation of (2.34) with respect to PiJ yields 

or 

dP dv dY0 dv 
--v+P-- = --v+Y0 -­
dpij dpiJ dpij dpij 

(P-Yolm) ddp~j = (siJim - dd;Jv 
(where, for notational convenience, the symbols "(piJ)" have been 
dropped). This equation tells us that z = dv/dpij satisfies the algebraic 
equation 

(2.35) 

Since Yo is geometrically simple ( cf. Theorem 2.5), the null space of P -
Yolm is spanned by v, and the null space of the transpose of P - Yolm is 
spanned by wT. From linear algebra, it follows that equation (2.35) has 
a solution only if the right side is orthogonal to wT: 

WT (sijlm - dd:j )v = 0, 

which gives us the formula 

_ 1 T dP 
sij - -T-w d-v. 

w V Pij 
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This formula for the sensitivity can be simplified by noting that the ma­
trix dP/dpij consists entirely of zeros exceptin the ijth entry where there 
appears a 1. As a result 

hence, 
wivj 

Sij = -T-. 
WV 

Placing all sensitivities into a matrix, we get the sensitivity matrix 

1 
S == [sij] = -T- [ wivJ. 

WV 

Since [ wi v j] = wvT, we obtain the following theorem. 

Theorem 2.20. Assume P = [Pij] is nonnegative and irreducible and 
that wT and v are positive left and right eigenvectors associated with its 
dominant eigenvalue r0 . Then the sensitivity 

dr0 
S··=--

11 dp·· 
l] 

of r0 with respect to an entry Pij in the projection matrix is equal to 

(2.36) 

and the sensitivity matrix S = [ sij] can be written 

1 
(2.37) S = -WVT 

wTv 

Remark 2.21. Note that S is a positive matrix, and therefore r0 increases 
with an increase in any entry Pij· 

The sensitivity of r0 with respect to Pij gives an approximation to the 
new value of r0 , namely r0 (pij + !1pij ), when pij is additively perturbed 
to pij + !1pij· Specifically, from the definition of a derivative 

ro (Pij + !1pij)- ro (pij) ~ dro (pij) 
~ d ' !1pij Pij 

we obtain 

(2.38) 
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Thus, sensitivities provided additive perturbation approximations to the 
population growth rate r0 caused by small additive perturbations in pro­
jection matrix entries. 

Example 2.22. Consider the juvenile-adult model in Example 2.11 with 
fertility and survival values given in the projection matrix 

(2.39) p = [ 0 0.7 ] 
0.5 0.6 . 

The dominant eigenvalue is (rounded to 3 significant digits) 

r0 ::::; 0.963 < 1, 

and as a result, the population is predicted to go extinct. Associated pos­
itive left and right eigenvectors are (rounded to 3 significant digits) 

[ 0.421 ] w ::::; [ 0.342 0.658 ] and v::::; 0_579 . 

Using formula (2.37) 

T [ ] [ 0.421 ] W V ::::; 0.342 0.658 0_579 ::::; 0.525, 

we obtain the sensitivity matrix (rounded to 3 significant digits) 

S::::; _l_ [ 0.342 ] [ 0 421 0 579 ] ::::; [ 0.274 0.377 ] 
0.525 0.658 . . 0.528 0. 726 . 

For example, recalling from Example 2.11 that s1 and s2 are the sur­
vival rates ( or survival probabilities) of a juvenile and an adult, respec­
tively, we see from the last row in the sensitivity matrix S that dr0 / ds1 ::::; 

0.528 is less than dr0 /ds2 ::::; 0.727. We conclude that while a small ad­
ditive increase in either juvenile or adult survival will increase r0 (both 
sensitivities are positive), a small additive increase to adult survival s2 

gives a greater additive increase to r0 than does the same additive in­
crease in juvenile survival s1. 

For example, suppose juvenile survival s1 = 0.5 is additively in­
creased by the increment Lls1 = 0.2. From (2.38), the additive effect 
on r0 is 

r0 (0.5 + 0.2) ::::; 0.963 + 0.528 (0.2) ::::; 1.07. 

If adult survival s2 = 0.6 is additively increased by the same increment 
LlS2 = 0.2, then the additive effect on r0 is 

r0 (0.6 + 0.2)::::; 0.963 + 0.726 (0.2)::::; 1.11. 
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Notice that the formula provides a sensitivity of 0.274 for the p11 entry 
in P, even though the model is designed so that this entry equals O (since 
the time unit is chosen to be the maturation period). If, for some reason, 
a change in the model (say in the maturation period) were to occur, this 
sensitivity would reflect the effect on r0 of that entry. Otherwise, the 
entry is not relevant. □ 

In Example 2.22, additively increasing adult fertility / 1 = 0.7 by the 
increment 11f = 0.2 has the effect of (additively) increasing r0 to 

r0 (0.7 + 0.2)::::;; 0.963 + 0.377 (0.2)::::;; 1.04. 

Adding the same perturbation increment 0.2 to the survival probabilities 
in Example 2.22 allows a ready comparison between which perturbation 
has the greater or lesser effect on r0 • Adding the same numerical incre­
ment 0.2 to the fertility rate doesn't lend itself to direct comparison, since 
fertility and survival rates are different phenomena expressed in differ­
ent units. Another way to compare perturbations of survival and fertility 
probabilities is to consider proportional (percentage) changes and ask 
what proportional (percentage) changes they cause in r0 • 

If Pij is changed by an amount !1pij, then its percent change is 
(11pij!Pij) x 100. If this causes a change !1r0 in r0 , then the percent 
change inr0 is (/1r0 /r0 )xl00. We can compare these two percent changes 
by calculating their ratio 

(11r0 /r0 ) x 100 Pij M 0 
=---

(11Pi/Pij) x 100 ro 11Pij. 

For small changes in pij, this is approximately equal to 

(2.40) 
Pij dro 

e--=- ---
11 - ro dpij, 

which is called the elasticity of r0 to changes in Pij· (It is sometimes 
called the sensitivity index of pij.) Notice that the second factor in the 
elasticity (2.40) with respect to Pij is the sensitivity (2.36) with respect 
to Pij· We gather elasticities with respect to all entries PiJ into the elas­
ticity matrix 
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which we can rewrite as the Hadamard product of the projection matrix 
P and the sensitivity matrix S: 

1 
(2.41) E = -P 0 S. 

ro 

Example 2.23. For the juvenile-adult model with projection matrix 

p _ [ 0 0.7 ] 
- 0.5 0.6 ' 

we have from the calculations in Example 2.22 and formula (2.41) the 
elasticity matrix 

1 [ 0 0.7 ] [ 0.274 0.377 ] 
E ;::::; 0.963 0.5 0.6 ° 0.528 0.726 

1 [ 0 (0.274) 0. 7 (0.377) ] 
= 0.963 0.5 (0.528) 0.6 (0. 726) 

[ 0 0.274 ] 
;::::; 0.274 0.452 . 

The elasticities of r0 with respect to f and s1 are equal (see Exercise 2.37). 
A p% change in either for s1 results in a 0.274 x p% change in r0 . The 
elasticity with respect to s2 , however, is larger: a p% change in s2 results 
in a 0.452 x p% change in r0 • □ 

2.5. Applications 

In this section are three applications of linear matrix models. The LPA 
model is an m = 3 dimensional extended Leslie model applied to a bee­
tle population (a nonlinear version of which will appear in Chapter 3). 
An m = 5 dimensional matrix model based on the life cycle stages of 
the American bullfrog and an m = 8 dimensional model for a tropical 
shrub based on stem diameter complete the section. The reproduction 
number R0 is calculated and some sensitivity analysis is performed for 
each application. 

2.5.1. The LPA Model. The m = 3 dimensional LPA model with pro­
jection matrix 

bd ] with b3 > 0 and 0 < s1,s2 ~ 1, 

S2 S3 

0 
0 
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introduced in Example 2.13 has been extensively used to study the pop­
ulation dynamics of flour beetles (species from the genus Tribolium), 
which is a serious agricultural pest. In this model, the population is 
structured by three life cycle stages 

Larvae l 
Pupae , 
Adults 

and the time unit is two weeks. Parameter estimates from controlled lab­
oratory experiments of Tribolium castaneum [ 41], [ 52] give the fertility 
and transition matrices 

[ 
0 0 10.67 

F = 0 0 0 
0 0 0 

0.8~45 ~ ~ l · 
0 1 0.9924 

The dominant eigenvalue of P = F + T (rounded to 4 significant digits) 
is 

r0 ::::::; 2.437, 

which, being larger than 1, predicts population growth. The stable stage 
distribution is given by the associated positive eigenvector (normalized 
sothatllvll = 1) 

[ 
0.6418 l 

V::::::; 0.2118 . 
0.1463 

(All calculations in this example are rounded to 4 significant digits since 
the original data in F and T are recorded to 4 significant digits.) Thus, 
in the long run, the growing population is predicted to consist of 64.15% 
larvae, 21.18% pupae, and 14.66% adults. 

We can calculate the reproduction number (the expected number of 
larvae produced per individual per lifetime) from formula (2.29) to be 

1 
Ro = (1.067 X 10) (0.8045) (1) l _ 0_9924 ::::::; 1129 
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or from its definition as the dominant eigenvalue of F (Im - T)- 1 , which 
equals 

[ lr ][ -1 
0 0 1 0 

I _}9924 l 0 0 -0.8045 1 
0 0 0 -1 

~ [ 1129. 1404. 1404. l 0 0 0 
0 0 0 

A left eigenvector of P = F + T is 

[ 0.087 54 l w;:::::; 0.265 3 
0.6471 

from which, usingv and formulas (2.37) and (2.41), we can calculate the 
sensitivity and elasticity matrices 

[ 0.2714 0.08957 0.06187 l 
S = 0.8226 0.2715 0.1875 and 

2.006 0.6621 0.4573 

E~[ 0 0 0.2709 l 
0.2716 0 0 . 

0 0.2717 0.1862 

As an example, consider the sensitivities s21 = 0.8226 and s32 = 0.6621 
of the larval and pupal survival rates s1 = 0.8045 and s2 = 1, respectively. 
A decrease in the larval rate by, say, 0.1 to s2 = 0. 7045 will result in a 
larger decrease in r0 than the same decrease of the pupal rate to s2 = 0.9. 
Specifically, the decrease in s1 will result in 

r0 ;:::::; 2.437 - 0.8226 x 0.1 ;::;::; 2.355, 

where as the decrease in s2 will result in 

r0 ;:::::; 2.437 - 0.6621 x 0.1 ;::;::; 2.371. 

Both of these decreases are greater than a 0.1 decrease in the adult sur­
vival rate s3 0.9924 to 0.8924 (whose smaller sensitivity is 0.4573), 
which gives 

r0 ;:::::; 2.437 - 0.4573 x 0.1 ;::;::; 2.391. 
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To compare the effects on r0 of changes in adult fertility b3 = 10.67 
with changes in survival rates, we consider proportional perturbations 
and the elasticities in E. Notice that the elasticities of adult fertility and 
the larval and pupal survival rates are quite similar and, consequently, 
proportional changes in these vital rates will result in similar propor­
tional changes in r0 • A smaller proportional effect will occur, however, 
with the same proportional perturbation in the adult survival rate since 
its elasticity is smaller. For example, if adult fertility is decreased by 10%, 
then r0 will decrease by approximately 0.2709 x 10% ~ 2. 709% to 

r0 ~ 2.437 - 0.02709 x 2.437 ~ 2. 371. 

A decrease in adult survival by 10% will result in a decrease of approxi­
mately 0.1862 x 10% = 1.862% to 

2.437 - 0.01862 X 2.437 ~ 2.392. 

Suppose we wish to eliminate the population (as a pest) by, for ex­
ample, decreasing the larval survival rate s1 so that r0 < 1. The threshold 
value of s1 for doing this is that value for which r0 = 1. Since we do not 
have a convenient formula for r0 (it is the root of the cubic characteris­
tic polynomial of P), we invoke Theorem 2.15 and use R0 instead. From 
(2.29), we can determine the value of s1 for which R0 = 1. Solving 

1 
Ro = 10.67 X S1 X 1 X l _ 0_9924 = 1 

for s1 = 7.123 x 10-4 , we conclude that s1 < 7.123 x 10-4 implies r0 < 1. 

In Chapter 3, we consider a nonlinear version of the LPA model that 
has been extensively used in experimental population dynamics involv­
ing beetle species. 

2.5.2. A Bullfrog Model. The life cycle graph in Figure 2.5 has been 
used to study the population dynamics of the American bullfrog (Rana 
catesbeiana) [70]. This model structures frog populations by using the 
five classes indicated in the demographic vector 

X1 Egg & small tadpole 
X2 1st year large tadpole 

X= X3 2nd year tadpole 
X4 Metamorph/juvenile 
Xs Adult 
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Figure 2.5. The life cycle diagram for the American bullfrog model. 

and follows its dynamics on an annual timescale. Notice that an indi­
vidual passes through a sequence of stages to reach the adult stage and 
that there are two possible paths: a fast track that skips stage x3 and a 
slow track that includes it. The (nonnegative) fertility, transition, and 
population projection matrices associated with this graph are 

with 

0 0 0 0 f15 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

T= 

0 

T21 

0 
0 
0 

0 0 0 
T21 0 0 

0 0 
0 0 

T32 0 
T42 T43 

0 0 

0 f1s 

and P = 0 r32 0 
0 0 
0 0 

0 '42 T43 0 0 
0 0 0 T54 T55 

f15 > 0, 0 < Tij ::; 1, and r55 < 1. 

0 0 
0 0 
0 0 
0 0 

T54 T55 

An inspection of the life cycle graph shows there is a path between every 
pair of classes, and as a result, Pis irreducible. Is P primitive? Using a 
computer program to compute powers of P, one will find that the first 
power that is positive is P6 ; hence, by Theorem 2.S(b), it follows that P 
is primitive. 
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In order to determine conditions under which the population goes 
extinct (r0 < 1) or grows (r0 > 1), we can calculate the reproduction 
number R0 and invoke Theorem 2.15. The reason this calculation is 
tractable is that all rows, except the first, in the fertility matrix F consist 
entirely of zeros (because there is only one newborn class in the model). 
It follows that the same is true of the next generation matrix F (Is - T)-1. 

Since the eigenvalues of this triangular matrix appear along its diagonal, 
we see that O is an eigenvalue of multiplicity four and that the dominant 
eigenvalue R0 appears in the upper-left corner, which is the inner prod­
uct of the first row of F with the first column of (Is - T)-1 = [ nij]. Fur­
thermore, since only the last entry f 1s in the first row of F is nonzero, 
it follows that this inner product is simply f 1s times the last entry ns1 in 
the first column of (Is -T)-1: 

n11 
n21 

Ro = [ 0 0 0 0 f1s ] n31 = f1sns1• 

n41 

ns1 

Using the cofactor method to calculate the entry n 51 in the inverse 
(Im - T)- 1 , we find that 

-T21 1 0 0 

j 1 r 0 -T32 1 0 
n51 = 1 det 

0 -T42 -T43 1 det(I5 - T)-
0 0 0 -T54 

1 
= -1 -- (T21T42Ts4 + T21T32T43T54) 

- T55 

and that 

(2.42) 

This formula implies that the net reproduction number is the sum of 
the lifetime expected numbers of offspring from individuals that follow 
the fast and slow life cycle paths. To see this, notice that (1 - r55)-1 is 
the amount of time spent as an adult and f 15 (1 - r55 )-1 is the expected 
amount of offspring, given survival to adulthood (the probabilities of 
which are r21 r42 r54 and r21 r32 r43 r54 for the fast and slow tracks, respec­
tively). The population survives if R0 > 1 and goes extinct if R0 < 1. 
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As an example, parameter estimates are given in [70] for populations 
of bullfrogs in locations in suburban Victoria, British Colombia, Canada. 
With these estimates, the fertility and transition matrices are 

0 0 0 0 2.08 X 103 

0 0 0 0 0 
F= 0 0 0 0 0 and 

0 0 0 0 0 
0 0 0 0 0 

T-r 

0 0 0 0 0 

1 · 
7.00 X 10-2 0 0 0 0 

0 7.80 X 10-2 0 0 0 
0 1.60 X 10-2 2.00 X 10-2 0 0 
0 0 0 1.29 X 10-1 3.18 X 10-1 

and the net reproduction number (2.42) is R0 ~ 4.84 x 10-1 < 1, which 
predicts that these populations are endangered. (We round answers to 3 
significant digits throughout this example.) 

We can use a linear algebraic computer program to calculate the 
dominant eigenvalue r0 ~ 8.55 x 10-1 and associated eigenvectors 

9.16 X 10-1 

7.51 X 10-2 

V = 6.85 X 10-3 

1.57 X 10-3 

3.76 X 10-4 

2.23 X 10-4 

2.72 X 10-3 

and w = 3.05 x 10-3 

1.30 X 10-1 

8.64 X 10- 1 

of the population projection matrix P = F + T. From these, we can cal­
culate sensitivities and elasticities, but rather than calculate the entire 
5 x 5 sensitivity and elasticity matrices, we calculate just those sensitiv­
ities sij and elasticities eij corresponding to the nonzero entries in the 
projection matrix P = [Pij]. These appear in Table 2.1, where we see 
that r0 is most sensitive (with sensitivity 2.60) to additive perturbations of 
the transition rate r21 of a first-year large tadpole. An increase of r21 from 

7.00 x 10-2 to 7.00 x 10-2 + ll.r21 

will result in an increase in r0 from 

8.55 x 10-1 to approximately 8.55 x 10-1 + 2.601l.r21 . 
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For example, if ~r21 = 2.00 x 10-2, so that r21 is increased from 7.00 x 
10-2 to 9.00 x 10-2, then r0 will be increased to approximately 

ro r:::-; 8.55 x 10-1 + 2.60 (2.00 x 10-2) = 9.07 x 10-1. 

(As a check on this approximation, we can use a computer to calculate 
r0 of the new P = F + T to be approximately 9.02 x 10-1 so that the error 
made using the sensitivity is an over estimate of only 0.55%.) 

Table 2.1. The sensitivities and elasticities of r0 to the nonzero en­
tries in the bullfrog model with life cycle graph in Figure 5 with pa­
rameter values given in [70]. 

Entry 

Pis = f1s = 2.08 x 103 

P21 = T21 = 7.00 X 10-2 

P32 = T32 = 7.80 X 10-2 

P42 = T42 = 1.60 X 10-2 
p43 = r43 = 2.00 X 10-2 

p54 = T54 = 1.29 X 10-l 
p55 = r55 = 3.18 x 10-1 

I r0 sensitivity I r0 elasticity 
8.75 X 10-5 2.13 X 10-1 

2.60 2.13 X 10-1 

2.39 X 10-1 2.18 X 10-2 

1.02 X 10 1.91 X 10-1 

9.32 X 10-1 2.18 X 10-2 

1.41 2.13 X 10-1 

3.39 X 10-1 1.26 X 10-l 

The column of elasticities in Table 2.1 allows a comparison of the 
proportional effects on r0 from proportional changes from each of the 
model parameters. We find that the largest elasticity is 2.13 x 10-1, which 
occurs with respect to each of these three parameters: the birth rate f15, the 
transitions rate r21 to first-year large tadpole, and the transition from juve­
nile to adult r54. A 10% increase in any of these parameters will increase 
r0 by approximately 

(2.13 X 10-1) 10% = 2.13%, 

that is from 8.55 x 10-1 to 

r0 r:::-; 8.55 X 10-1 (1.0213) = 8.73 x 10-1. 

(As a check on this approximation, we can use a computer to calculate 
r0 of the new P = F + T to be approximately 8.72 x 10-1 so that the 
error made using the elasticity is an over estimate of only 0.115%.) By 
contrast, a 10% change in r32 = 7.80x 10-2 will increase r0 by the smaller 
percentage of only (2.18 x 10-2) 10% = 0.218%. 
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2.5.3. A Tropical Shrub Model. In a study of tropical savanna plants, 
the (nonnegative) fertility and transition matrices ( to 2 significant digits) 

0 0 0.096 0.29 0.52 0.56 0.98 1.5 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

F= 
0 0 0 0 0 0 0 0 

and 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0.69 0.035 0 0 0 0 0 0 
0.21 0.66 0 0.12 0.10 0 0.091 0.095 
0 0.21 0.54 0.12 0.050 0.10 0 0 

T= 
0 0.035 0.39 0.35 0.25 0 0 0 
0 0 0.077 0.29 0.35 0.10 0 0 
0 0 0 0 0.15 0.30 0 0.048 
0 0 0 0 0.050 0.50 0.36 0.095 
0 0 0 0 0 0 0.55 0.76 

were used to study the dynamics of the evergreen shrub Fabaceae Pe­
riandra mediterranea[79]. 

Populations of this shrub are classified into eight size classes, x1 , x2 , 

x3, ... , x7, and x8 , based on stem diameters and the intervals 0-0.9mm, 
l-l.9mm, 2-2.9mm, ... , 6-6.9mm, and~ 7mm, respectively. The unit 
of time is 1 year. Note that the two smallest size classes are nonrepro­
ductive. Also note that the model allows, each year, for stasis in stem di­
ameter (diagonal entries in T) or for either growth or shrinkage in stem 
diameter (entries above or below the diagonal in T). 

Using a computer to calculate powers of the population projection 
matrix P = F + T, one finds that (to 2 significant digits) 

84 17 250 250 370 630 750 800 
54 11 160 160 240 400 480 510 
28 54 81 80 120 200 240 250 

7 22 43 62 63 91 150 180 200 
(Im+ P) = 

12 24 35 35 52 84 100 110 
2.8 5.5 8.1 8.1 12 20 23 25 
3.7 7.4 11 11 16 27 33 34 
7.6 16 23 24 35 62 73 70 
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is positive and, by Theorem 2.8(a), that Pis irreducible. Another calcu-
lation shows that 

0.23 0.28 0.65 0.70 1.2 2.3 2.9 3.0 
0.24 0.25 0.34 0.41 0.60 0.96 1.4 1.5 
0.12 0.20 0.22 0.21 0.239 0.25 0.34 0.41 

p5 = 0.074 0.18 0.23 0.18 0.18 0.14 0.14 0.18 
0.030 0.10 0.16 0.12 0.11 0.067 0.045 0.058 
0.0028 0.016 0.039 0.033 0.038 0.042 0.039 0.040 
0.0014 0.012 0.041 0.045 0.071 0.12 0.11 0.12 
0.00015 0.036 0.025 0.046 0.14 0.39 0.46 0.45 

is also positive and, by Theorem 2.S(b ), that P is primitive. Again using 
a computer, we find that the dominant eigenvalue and positive left and 
right eigenvectors are r0 r:::; 1.1 and 

0.40 0.026 
0.26 0.046 
0.13 0.077 

(2.43) 
0.10 

and 
0.077 vr:::; 

0.057 
wr:::; 

0.11 
0.013 0.19 
0.017 0.23 
0.031 0.24 

Since r0 > 1, this model predicts population growth (by approximately 
10% per year), with a stable stem diameter size distribution given by v. 
A computer can also easily calculate the next generation matrix 

5.0 7.4 10 9.2 12 19 21 22 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

( -1 0 0 0 0 0 0 0 0 
F Im - T) r:::; 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

whose dominant eigenvalue is R0 r:::; 5.0. Thus, on average, 5 new shrubs 
are produced per shrub per lifetime. 
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Formula (2.37), with v and w given by (2.43), yields the sensitivity 
matrixS: 

0.17 0.11 0.056 0.044 0.024 0.0056 0.0074 0.013 
0.31 0.20 0.107 0.079 0.044 0.010 0.014 0.024 
0.50 0.33 0.17 0.13 0.073 0.017 0.022 0.040 
0.50 0.33 0.17 0.13 0.073 0.017 0.022 0.039 
0. 74 0.48 0.24 
1.3 0.82 0.42 
1.5 0.97 0.50 
1.6 1.0 0.52 

0.19 
0.33 
0.39 
0.41 

0.11 
0.18 
0.22 
0.23 

0.024 0.033 
0.042 0.056 
0.050 0.070 
0.052 0.070 

0.058 
0.099 
0.12 
0.12 

Formula (2.41) yields the elasticity matrix E: 

0.11 0.0035 0.0050 0.012 0.012 0.0029 0.0068 0.019 
0.060 0.12 0 0.0087 0.0041 0 0.0012 0.0021 
0 0.063 0.084 0.014 0.0034 0.0016 0 0 
0 
0 
0 

0 
0 

0.011 0.0560 0.043 0.017 0 0 0 
0 0 

0 

0 
0 

0.018 0.052 0.035 0.0023 0 
0 

0 
0 

0 

0 
0 

0.026 0.012 0 0.0044 
0.010 0.023 0.023 0.011 
0 0 0.036 0.088 

We see that the largest elasticities occur in the first two diagonal en­
tries of E, which are the probabilities that the smallest and nonreproductive 
shrubs will survive and remain in the same stem diameter class. Propor­
tional changes in these two probabilities will have the greatest propor­
tional effect on the population growth rate r0 • 

2.6. Concluding Remarks 

The basic methodology for the derivation of discrete time matrix models 
for structured populations described in this chapter involves the formu­
lation of fertility and transition matrices. The fertility matrix is used to 
predict, from the population distribution at one point in time, the distri­
bution of newborn individuals at the next census time, while the transi­
tion matrix is used to predict the distribution of individuals who survive 
to the next census time. The sum of these matrices is the population 
projection matrix that predicts, by matrix multiplication, the population 



2. 7. Exercises 85 

distribution from one census time to the next. The Fundamental Theo­
rem of Demography describes (amongst other things) a bifurcation phe­
nomenon that focuses on population extinction versus survival. The ex­
tinction equilibrium loses stability as the dominant eigenvalue r0 of the 
projection matrix and the population dies out (exponentially) if r0 < 1 
and grows exponentially without bound if r0 > 1. Only if r0 = 1 can 
long-term sustainable survival occur. The diagnostic quantity r0 is a de­
rived quantity from the entries appearing in the projection matrix for 
which, except in the lowest-dimensional cases, we cannot in general ob­
tain algebraic formulas. For that reason, we studied how r0 depends on 
projection matrices entries by means of sensitivity and elasticity analy­
sis. Another diagnostic for these asymptotic alternatives-one that in 
general is more algebraically tractable than r0 , namely the reproduction 
number R0-is also defined in this chapter. 

The linear models and their analyses given in this chapter assume 
that the entries in the projection matrix remain fixed in time. In general, 
the entries involve various kinds of per capita (individual) vital rates and 
other biological processes, such as birth rates, survival probabilities, re­
source consumption rates, growth rates, and so on. These rates typically 
do not in fact remain constant in time, at least for long periods. They 
can change for any number of reasons. One important reason is the 
effect on such vital rates that (class specific) population densities can 
have, through interactions among individuals involving competition for 
resources, predation, etc. This is the topic of the following Chapter 3. 
Another reason is change due to natural selection, which we will con­
sider in Chapter 5. 

2.7. Exercises 

Exercise 2.24. Provide a formal induction proof of the solution formula 
(2.14) for the linear matrix equation (2.3). Verify that the formula gives 
a solution by substituting it into both sides of the matrix equation to see 
that you get the same results. 

Exercise 2.25. Suppose Pis diagonalizable and let vi and wf be min­
dependent right and left eigenvectors associated with eigenvalues Ai. (a) 
Show that wJ vi = Om for all j =j:. i. (HINT: multiply Pvi = Aivi on the 
left bywJ and wf P = Aiwi on the right byvi.) (b) Use (a) to obtain the 
formula (2.17). 
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Exercise 2.26. An upper block triangular matrix has the form 

Mn M12 M13 M1k 
0 M22 Mz3 Mzk 

M = 0 0 M33 M3k 

0 0 0 Mkk 

where the diagonal blocks MiJ are square matrices (not necessarily of 
the same size). Prove that the eigenvalues of M are the eigenvalues of 
the blocks Mii. 

Exercise 2.27. Show that the solution formula (2.18) is real valued even 
if P has complex eigenvalues. (HINT: Complex roots occur in conju­
gate pairs. Show that the eigenvectors v and wand coefficients ci cor­
responding to conjugate eigenvalue pairs are also conjugate pairs. Write 
Ai in polar form and investigate the two terms in (2.18) arising from the 
two conjugate eigenvalues.) 

Exercise 2.28. Show that an Usher projection matrix (2.10) is 
irreducible if and only if bm > 0 and ri+l,i > 0 for all i. Suppose Pis 
irreducible. Prove it is primitive if there exists at least one positive diag­
onal entry rii > 0. 

Exercise 2.29. Calculate the eigenvalues of the semelparous Leslie ma­
trix 2.23 and use them to prove that it is imprimitive. 

Exercise 2.30. Use (2.16) and (2.3) to prove (2.14). 

Exercise 2.31. Assuming p (T) < 1 so that (Im -T)-1 exists, prove 
(2.25). 

Exercise 2.32. Prove that the first column of Clm-T)-1 for the extended 
Leslie transition matrix Tis as given by (2.28). (HINT: Use the cofactor 
method to calculate a matrix inverse.) 

Exercise 2.33. Use the cofactor method to calculate a matrix inverse to 
find the first column in (Im-T)- 1 for the Usher transition matrix (2.9). 
Then use your answer to derive the formula 

m i T·. 

Ro = ~ f i IT ~ 
i=l j=l l - Tjj 

for the reproduction number of the Usher projection matrix (2.10). In 
this formula, we have defined r10 = 1 for notational convenience. 
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Exercise 2.34. Calculate a formula for R0 for the population projection 
matrix with these fertility and transition matrices: 

{a) F given by (2.3l)with k - land T - [ 

0 0 
0 (b) F given by (2.31) with k = 1 and T = Tzi Tzz l T11 

0 T32 T33 

0 0 

(I) F -l 
Exercise 2.35. In Example 2.19, give interpretations of the individual 
terms 

1 1 
f13T31-1-- and f23T32-1--, 

- T33 - T33 

whose sum equals R0 . Use you answer to provide another interpretation 
of R0 . 

Exercise 2.36. In Example 2.22, calculate the juvenile survival rate s1 

for which r0 = 1. Then do the same for the adult survival rate s2 • 

Exercise 2.37. Consider the juvenile-adult model in Example 2.11 with 
projection matrix 
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(a) Calculate the sensitivities of the reproduction number R0 

(given by formula (2.26))with respect to juvenile and adult sur­
vival probabilities s1 and s2 . Under what conditions will R0 be 
more sensitive to s2 than to s1? Calculate the elasticities of R0 

with respect to s1 and s2 and answer the same question. 

(b) Show that the elasticities ofr0 with respect to b2 and s1 in the 
juvenile-adult model with projection matrix are equal. 

Exercise 2.38. The age structured Leslie model with fertility and tran­
sition matrices 

F=r 

0.01257 0.1002 0.3319 0.3319 

j 0 0 0 0 
and 

0 0 0 0 
0 0 0 0 

T=r 

0 0 0 0 

j 0.1089 0 0 0 
0 0.8680 0 0 
0 0 0.8680 0.8680 

has been used to model the population dynamics of the Northern Spotted 
Owl (Strix occidentalis caurina) [69]. The time unit is 1 year. Calculate 
r0 and R0 , the stable age distribution v, and the sensitivity & elasticity 
matrices S and E. 

Exercise 2.39. In [88], [112], a 13 x 13 Leslie matrix is used to model 
the dynamics of the endangered African elephant (Loxodonta africana) 
in Amboseli National Park, Kenya. The age class sizes used are oflength 
5 years, so the time unit in the matrix model is 5 years. The fertility 
matrix (2.4) and the transition matrix (2.5) have the entries in Table 2.2. 

Table 2.2. Entries for the fertility and transition matrices. 

i 11 2 3 4 5 6 

bi 0.000 0.014 0.550 0.925 1.040 1.053 

Ti,i-1 NA 0.917 0.976 0.956 0.939 0.918 

I 7 8 9 10 11 12 13 

bi 1.067 1.090 0.985 0.829 0.646 0.472 0.099 
Ti,i-1 0.911 0.890 0.832 0.842 0.844 0.802 0.718 
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Calculate r0 and R0 and the stable age distribution v. Is the pop­
ulation growing or declining? Calculate and interpret the sensitivity & 
elasticity matrices S and E. 

Exercise 2.40. A Seed Bank Model. Consider an annual plant that 
flowers in the spring of each year. Suppose that each spring a seed can 
either germinate, producing a new flowering plant for that season, or 
remain as a seed for another year. Suppose, however, that no seed can 
remain viable for more than 3 years. Let Si, s2 , and s3 (0 < si < 1) be 
the fraction of 1-, 2-, and 3-year-old seeds that germinate, respectively, 
and let bi > 0 be the number of seeds produced by a plant from an i­
year-old seed. Designate four classes: 1-, 2-, and 3-year-old seeds (at the 
beginning of spring) and flowering plants. Draw a life cycle graph and 
prove that the associated projection matrix is irreducible and primitive. 
Calculate the reproduction number R0 . 

Exercise 2.41. In a study of the effects that the infamous deep water 
horizon oil spill in 2010 had on the sperm whale population in the Gulf 
of Mexico, the authors in [2], [20] utilized a matrix model with demo­
graphic vector 

calves 
juveniles 

mature females 
mothers 

post breeding females 

and projection matrix P = F + T, where 

0 0 0.1250 0 0 
0 0 0 0 0 

F= 0 0 0 0 0 and 
0 0 0 0 0 
0 0 0 0 0 

0.4778 0 0 0 
0.4292 0.8339 0 0 

T= 0 0.1085 0.7249 0 
0 0 0.2528 0.4967 
0 0 0 0.4810 

0 
0 

0.4810 
0 

0.4967 

The use of a computer program to carry out matrix calculations will be 
necessary for parts of this exercise. 
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(a) Draw the associated life cycle graph. 

(b) Show that A is irreducible. 

(c) Show that A is primitive. 

(d) Calculate the dominant (Perron) eigenvalue r0 = A1. Is the 
population growing or declining? 

(e) Calculate the positive eigenvector v1 associated with ,1, 1 that 
has norm I lv1 11 = 1. In this normalized class distribution, the 
highest proportion of individuals and the lowest proportion of 
individuals are in which classes? 

(f) Calculate R0 . 

(g) Calculate the sensitivity matrix. To which entry in A is r0 most 
sensitive? 

(h) Calculate the elasticity matrix. To which entry in A is r0 most 
elastic? 



Chapter 3 

Nonlinear Matrix Models 
for Structured 
Populations 

In this chapter, we consider matrix models for structured populations 
in which the vital rates in the population project matrix are no longer 
necessarily fixed in time, but instead change over time because they are 
dependent on population density. Two fundamental goals in the study 
of such nonlinear matrix models, both biological and mathematical, in­
volve the stability and instability of the extinction equilibrium and 
the existence and stability of survival equilibria, by which is meant 
equilibria lying in R'_f\ {Om}. These questions are addressed in Sections 
3.3 and 3.4, respectively, after the preliminary matters are dealt with in 
Section 3.L 

3.1. Modeling Methodology 

In Example 2.11, we considered an m = 2 dimensional matrix model of 
a population structured into juvenile and adult classes 

x = [ x1 ] = [ juveniles ] 
x 2 adults 

91 
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with the fertility and transition matrices 

and T = [ O O ] 
S1 S2 

and the resulting population projection matrix 

p = F + T = [ 0 b2 ] 
S1 S2 

whose entries are constants. If one or more of the three vital rates in this 
projection matrix do not remain constant over time but instead change 
when the density of the juvenile class and/ or the adult class change, then 
the entries in the projection matrix become functions of x. In this case, 
we have density-dependent fertility and transition matrices of the forms 

F (x) = [ ~ f120(x) ] = [ ~ !12 (xd, X2) ] and 

T(x) = [ r21~x) T22~x) ] = [ T21 (;1,X2) T22 (;1,X2) ] . 

The notation f12 (x) and rij (x) (or alternatively f 12 (x1, x2) and 
rij (x1, x2)) indicates a dependence of these vital rates on the class­
specific densities x1 and x2 . This dependency can be caused, for ex­
ample, by crowding and the resulting competition for resources (food, 
space, mates, etc.), which cause a decrease in the vital rate as x1 and/or 
x2 increase. Or, in contrast to such a negative effect, an increase in pop­
ulation density might cause instead an increase in a vital rate. Such a 
positive effect could be due, for example, to cooperation in the protec­
tion of offspring or in resource gathering. A negative density effect is 
mathematically described by a decreasing function of x1 and/or x2 in 
the modeling of a projection matrix entry, while a positive density effect 
results from use of an increasing function of x1 and/ or x2 . Of course, a 
mixture of negative and positive effects are certainly possible in a model. 

Density-dependent matrices F (x) and T (x) yield a density-depen­
dent population projection matrix 

(3.1) p (x) = [ 0 !12 (x) ] 
Tz1 (x) Tzz (x) 

with x = col(x1, x2) and the associated matrix equation 

x(t + 1) = P (x(t)) x(t) 
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Figure 3.1. The life cycle graph associated with the juvenile-adult 
model projection matrix (3.1). 

for the population dynamics. This matrix equation can alternatively be 
written less concisely as a system of two difference equations: 

X1 (t + 1) = /12 (X1 (t), Xz (t)) Xz (t) and 

X2 (t + 1) = T21 (X1 (t), X2 (t)) X1 (t) + T22 (X1 (t), X2 (t)) X2 (t). 

The life cycle graph associated with the juvenile-adult model with pro­
jection matrix (3.1) is shown in Figure 3.1. 

Example 3.1. A Nonlinear Juvenile-Adult Model. Consider 

whereby adult per capita fertility decreases, from the inherent (density­
free) fertility rate b2 , with increased adult population density x2 (due, 
say, to competition for mates or food resources). In addition, assume 
juvenile survival s1 is constant (density independent) and the population 
is semelparous, so that s2 = 0. Then the (nonnegative and irreducible) 
population projection matrix (3.1) is 

P(x) = [ O 
S1 

b 
1 

] 2 l;cx2 

with b2 , c > 0 and O < s1 ::; 1. 

The resulting population model is 

(3.2) 

□ 
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The matrix model (3.2) is a special case of Ebenman's model 

b l 
2 l+c21x1(t)+c22x2(t) 

0 

which has been used to study the consequences ofresource competition 
between juveniles and adults [38], [66], [67]. 

As pointed out in the introduction to this chapter, basic questions of 
interest with regard to a nonlinear matrix equation concern the stability 
properties of the extinction equilibrium Xe = Om and the existence and 
stability of survival equilibria x E Rr;_'\ {Om}- As an introduction to our 
study of these questions, we take a close look at the juvenile-adult model 
(3.2) for which answers are readily available. What we will find is that 
the asymptotic dynamics of this equation bear a strong similarity with 
the dynamics of discrete logistic equation (1.17). 

Recall that the extinction equilibrium of the discrete logistic equa­
tion destabilizes as the inherent fertility rate increases through a criti­
cal value, with the result that stable positive equilibria are created (by a 
forward, stable bifurcation). In Example 3.2, we show that this same bi­
furcation phenomenon occurs in the juvenile-adult model (3.2), which 
motivates our goal of studying this bifurcation in general nonlinear ma­
trix models in the following sections. 

Example 3.2. For any initial condition x(0) = col(x1 (0), x2 (0)) E Rt, 
there corresponds a unique solution x(t) = col(x1 (t) ,x2 (t)) E Rt, 
t E Z+, of the juvenile-adult model (3.2). We first ask, Are there any 
equilibrium solutions? An equilibrium is a constant solution col(x1, x2) 

that satisfies the nonlinear algebraic matrix equation 

[ ~~ ] = [ ~ b2 1;~x2 ][ ~~ ] • 

Ali ttle bit of algebra shows that there are two solutions of this algebraic 
matrix equation: 
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the first of which is the extinction equilibrium and the second of which 
is a survival equilibrium if and only if b2 s1 > 1. What about nonequilib­
rium solutions? 

It is left as Exercise 3.35 to verify that the solution with initial con­
dition x (0) = col (x1 (0), x2 (0)) is given by the (rather formidable) for­
mulas 

[ 
X1(0) 

l _1 ~, + b c:1_1 x1(0) 
(b2s1) 2 1 

x2(0) 

l X1 (t) j= 
-~+-c-x2(0) 

(3.4) (b2sd b2s1 -1 

X2 (t) 

[ 
x2(D) 

l 1 1 cs1 0 
Dz (b2s1 )' -I 62s1 -1 x2( ) 

x1(D) 

---+-c-x1(0) 
s1 (b2sd b2s1 -1 

fort = 2i for i E Z+ 

fort = 2i + l for i E Z+ 

when b2s1 i- 1 and 

[ 
b2X1 (0) 

l icx1 (0)+b2 when t = 2i for i E Z+ 

[ X1 (t) 
] = 

X2(0) 
icx2(0)+l 

X2 (t) [ 
b2x2(0) 

l (i+ l)cxlO)+ l when t = 2i + 1 for i E Z+ X1 0) 
icx1(0)+b2 

when b2s1 = 1. A careful investigation of these solution formulas shows, 
for all positive initial conditions col(x1 (0), x2 (0)) E int (Rt), that 

(3.5) lim [ 
t----,oc 

X1 (t) ] { [ ~ ] 
X2 (t) = [ b2;;1-l l 

b2s1 -1 
C 

That is to say, solutions with positive initial conditions approach the 
extinction equilibrium (and the population goes extinct) if b2s1 s 1 
but approach the positive equilibrium (and the population survives) if 
b2S1 > 1. □ 

Adapting the jargon introduced in Chapter 1, we would say about 
the juvenile-adult model (3.2) that the extinction equilibrium is globally 
attracting on int (Rt) if b2s1 s 1 and that the survival equilibrium is 
globally attracting on int (Rt) if b2s1 > 1. These two alternatives are the 
same alternatives as we found for the discrete logistic equation (1.17) 
studied in Chapter 1. Namely, the extinction equilibrium is no longer 
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attracting after b2s1 increases through 1, and as a result of this destabi­
lization, a branch of stable survival (positive) equilibria bifurcates from 
the extinction equilibrium at b2s1 = 1. This bifurcation phenomenon is 
a matrix model example of the basic bifurcation Theorems 1.12 and 1.17 

in Section 1.2.1 for difference equations. One goal of the current chap­
ter is to study this basic bifurcation phenomenon for general nonlinear 
matrix models of any dimension m > l. 

Following the modeling methodology in Section 2.1, we consider the 
nonlinear matrix model equations of the form 

(3.6) x(t + 1) = P(x(t))x(t), 

where the projection matrix 

(3.7) P (x) = F (x) + T (x) = [Pij (x)] 

and the fertility and transition matrices 

(3.8) F (x) = [f ij (x)] and T (x) = [ Tij (x)] 

are allowed to be density-dependent. 

In what follows, we will often describe population models by de­
scribing the projection matrix only, and it is to be understood that the 
dynamic model is the associated matrix difference equation (3.6). A ma­
trix difference equation can also be written as a system of m (first order) 
difference equations 

X1 (t + 1) = Pn (X1 (t), ··· ,Xm (t))X1 (t)+ 

· · · + Pim (X1 (t), · · ·, Xm (t)) Xm (t) 

X2 (t + 1) = P21 (X1 (t), · · ·, Xm (t)) X1 (t) + 
··· + P2m (X1 (t), ··· ,Xm (t))Xm (t) 

Xm (t + 1) = Pml (X1 (t), ··· ,Xm (t))X1 (t) + 
··· + Pmm(X1(t),···,Xm(t))Xm(t), 

where xi are the entries in x and Pij (x) = Pij (x1 , • • •, Xm) are the entries 
in the projection matrix. 

Before embarking on a study of the equilibria of equation (3.6), we 
need first to set some ground rules with regard to domains, ranges, and 
smoothness of the matrix entries as functions of x. 
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Assumption 3.3. The entries in the fertility and transition ma­
trices (3.8) of the population projection matrix (3.7) satisfy fij, Tij E 

C2 (Rm : R+) and O::; Tij (x)::; 1, 'f-7= 1 Tij (x)::; 1 for all x ER~. 

Note that Assumption 3.3 implies that all entries f ij and Tij in the 
fertility and transition matrices are nonnegative-valued functions and, 
as a result, that the matrices F (x) and T (x) are nonnegative for all x E 

R~. 

Any initial condition x(O) E R~ generates a unique sequence by 
iteration of the matrix equation (i.e., a unique solution of equation (3.6)). 
Assumption 3.3 implies the projection matrix P (x) is nonnegative for all 
x ER~, which in turn implies the solution x(t) ER~ for all t E Z+. 
(We say that R~ is forward invariant.) 

Remark 3.4. Recalling Remark 1.3, we assume any mathematical expres­
sions used for f ij, Tij that are not defined or smooth outside of R+ (e.g., 
in Ebenman's model in Example 3.1) are redefined outside of R+ so as to 
satisfy Assumption 3.3. Given the (forward) invariant on R~, any such re­
definitions have no affect on the application of the matrix equation (3.6) to 
population dynamics. 

The constraints in Assumption 3.3 on the ranges of the Tij are made 
because they are, in our models, survival fractions (or probabilities). The 
requirement that z:.7;c1 Tij (x) ::; 1 implies that the fraction of individuals 
from any class i that survive a unit of time (and get dispersed throughout 
all classes) cannot exceed 1. 

So that we can utilize results from Perron-Frobenius theory, we will 
also assume 

Assumption 3.5. P (x) is irreducible for each x E R~. 

The matrix P (Om), which plays an important role in our following 
analysis, is called the inherent (or intrinsic or density-free) projection 
matrix. It models the population's (linear) dynamics when density ef­
fects are absent. The entries fij (Om) and 'ij (Om) in the inherent fer­
tility matrix F (Om) and inherent transition matrix T (Om) are the 
inherent fertility and transition rates, respectively. 

In building a density-dependent population model, one must spec­
ify the properties of, and decide upon mathematical expressions for, the 
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entries J ij (x) and Tij (x) in a way that accounts for how fertility and sur­
vival are affected by changes in population density. This can be done, as 
done in Section 1.2, by introducing factors that depend on the class den­
sities and that modify the inherent rates: 

Jij (x) = bij/3ij (x) and Tij (x) = SijO'ij (x). 

We assume the density factors /3ij, aij E C2 (Rm : R+) satisfy the nor­
malizations 

/3ij (Om)= CJij (Om)= 1. 

so as to insure that the constants bij and sij have interpretations as the 
inherent (density-free) fertility and transition rates. 

By Assumption 3.3, P (x) is a nonnegative matrix for all x E R'.;:. 
Together with Assumption 3.5 and Perron-Frobenius theory (cf. Theo­
rem 2.5), we know that the spectral radius p (P (x)) of P (x) is a positive 
eigenvalue of P (x) that is greater than or equal to the absolute value 
of all other eigenvalues. We refer to this dominant eigenvalue as the 
population growth rate when the population has density distribution x. 

3.2. Equilibria and the Linearization Principle 

An equilibrium of (3.6) is a solution x = Xe E R'.;: of the nonlinear alge­
braic equation 

x = P(x)x. 

Clearly Xe = Om is an equilibrium (the extinction equilibrium). A sur­
vival equilibrium is a solution of this equation that lies in R'.;:\ {Om}, 
and positive equilibrium is a survival equilibrium that lies in int (R'.;:). 

Our first step is to extend stability definitions in Definition 1.8, when 
m = I, to the higher-dimensional case m ;:::: 1. While any norm on Rm 

will work in these definitions, we use the norm 
m 

i=l 

which, in a population model, is the total population size or density 
associated with demographic vector x E R'r. 

Definition 3.6. Assume f E C (O : O), where O ~ Rm is an open set, 
and that Xe E Rm is an equilibrium a difference equation 

(3.9) x(t + 1) = f(x(t)), 
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that is to say Xe solves the equilibrium equation x = f(x). 

(a) Xe is locally stable if for each£ > 0 there is a 8 (c:) > 0 such 
that for any initial condition x (0) E D satisfying llx (0) - xell < 
o(c:)itfollowsthat llx(t)-xell < c:forallt E Z+. Ifxeisnot 
locally stable, we say it is unstable. 

(b) Xe is attracting if there is a 8* > 0 such that for any initial 
condition x (0) E D satisfying llx (0) - xell < 8* it follows that 
limt-.+oo llx(t)- Xell = 0. 

( c) xe is locally asymptotically stable if it is both locally stable 
and attracting. 

Remark 3.7. As in the case m = 1, when we say that an equilibrium Xe 
is stable, we always mean it is locally asymptotically stable. 

Remark 3.8. Iflimt--++oo llx (t) - xell = 0 for all initial conditions x (0) 
in a set A~ D, then we say Xe is attracting on A. Ifin addition Xe is locally 
asymptotically stable, then we say Xe is globally asymptotically stable on 
A 

The main method used for a study of the local asymptotic stability of 
an equilibrium is the Linearization Principle, the use of which requires 
the calculation of the Jacobian off (x) = col (f i (x) ), which is the m x m 
matrix 

8xJ1 (x) 
8xJ2 (x) 

3xmfl (x) j 
axmf2 (x) 

axmfm (x) 

whose rows are the gradients of the entries Ji (x). The spectral radius of 
Jf(x)is 

p(Jf(x)) = max{l,,111, 1,,121, ···, 1,,1,ml}, 

where ,,li are the eigenvalues of Jf(x). 

Theorem3.9. The LinearizationPrinciple[62]. Assumexe isanequi­
libriumofthedif.ferenceequation (3.9)withf E C1 (D: D)whereD ~ Rm 
is an open set containing xe. Then xe is locally asymptotically stable if 
p (Jf(xe)) < 1 and is unstable if p (Jf(xe)) > 1. 

A proof of this theorem can be constructed by modifying the proof 
of Theorem 1.10 for them= 1 case in Appendix A.2. (The reader might 
try their hand at this; or see [62].) 



100 3. Nonlinear Matrix Models for Structured Populations 

It is important to note, as we did in Chapter 1 when m = l, that the 
Linearization Principle provides a sufficient, but not a necessary, condi­
tion for the local asymptotic stability of an equilibrium. This is because 
an application ofTheorem 3.9 requires that p (Jf (xe)) =f=. 1 (in which case 
xe is said to be hyperbolic.) 

Example 3.10. Consider the semelparousjuvenile-adult model (3.2) for 
which 

f (x) = p (x) x = [ ~ b2 1;~x2 ][ ~~ ] = [ b2 1s:~t X2 ] · 
The Jacobian 

Jf(x) = [ O 
S1 

evaluated at the extinction equilibrium is 

(3.10) Jf (02) = [ ~ ~2 ] 

and has eigenvalues ±Vb2s1; hence, r0 = p (Jf(02)) = Vb2s1. By the 
Linearization Principle (Theorem 3.9), we see that the extinction equi­
librium is stable if b2s1 < 1 and unstable if b2s1 > 1. (Note that Jf (02) 

is the same as the inherent projection matrix P (02).) 

For b2s1 > 1, the Jacobian at the positive equilibrium 

is 

Jf (xe) = [ i s1}2 ] 

whose eigenvalues are ±1/Vb2s1. Thus, p (Jf(0m)) = 1/Vb2s1 < 1, and 
by the Linearization Principle, the positive equilibrium is stable. □ 

The inherent projection matrix (3.10) of the juvenile-adult model 
(3.2) is a 2 x 2 Leslie matrix with inherent population growth rate r0 = 
Vb2s1 and inherent reproduction number R0 = b2s1 (see Section 2.3). 
Note that r0 = ..,/Ro. The destabilization of the extinction equilibrium of 
equation (3.2) occurs as r0 , or equivalently R0 , increases through l. 
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The Linearization Principle in Theorem 3.9 implies only the local 
stability of an equilibrium. However, by making use of the solution for­
mulas (3.5) and the linearization analysis in Example 3.10, we find that 
when b2s1 < 1, the extinction equilibrium of the juvenile-adult model 
(3.2) is both stable and attracting for all initial conditions x (0) e Rt 
(that is to say, Xe = 02 is globally asymptotically stable on Rt). And, in 
addition, we find that when b2s1 > 1, the positive equilibrium is globally 
asymptotically stable on int (Rt). 

Example 3.10 shows that the juvenile-adult matrix model (3.2) un­
dergoes a bifurcation directly analogous to what we saw for single differ­
ence equation models (l.ll) in Chapter 1. Namely, upon destabilization 
of the extinction equilibrium, there occurs a forward bifurcation of sta­
ble positive (survival) equilibria. The main goal of the following several 
sections is to explore this basic bifurcation for general matrix models 
(3.6) of any dimension m ~ 1. 

Remark 3.11. The reader should carefully consider what it means to say 
that an equilibrium is unstable by considering the logical negation of the 
definition of local stability in Definition 3.6(a). Local stability means, 
roughly speaking, that solutions remain close to the equilibrium (as close as 
you want) if they initially start close enough to the equilibrium. However, 
instability does not mean that all initially nearby solutions fail to remain 
close to the equilibrium. 

A simple example that illustrates this remark is the (linear) matrix 
equation with projection matrix 

P=[~ 1] 
whose eigenvalues are tt1 = 2 and tt2 = 1/2. The equilibrium Xe = 02 is 
unstable because tt1 > 1. Nonetheless, there exist solutions whose initial 
conditions are arbitrarily close to Xe = 0 that do not move or stay away 
from Xe= 02 ; namely, the solutions 

which approach Xe = 0 2 as t -+ oo for any x2 (0) =j:. 0, even though 
Xe = 02 is unstable. 



102 3. Nonlinear Matrix Models for Structured Populations 

A stronger concept of instability would require that all solutions, no 
matter how initially close to the equilibrium they might be, ultimately 
remain a finite distance away from an equilibrium. This leads to the 
notion of persistence [122]. 

Definition 3.12. We say the matrix equation (2.3) is (uniformly) per­
sistent with respect to the extinction equilibrium Xe = Om if there exists 
a number 11 > 0 such that lim inft-+oo I Ix (t)I I ~ 11 for all initial conditions 
x(O) E int(R~). 1 

As we have seen, when s1b2 > 1, solutions of the the juvenile-adult 
model (3.2) satisfy 

for all initial conditions x (0) E int (Ri ). From the formula (3.4) for Xe, 

we have that 

lim inf llx(t)- 0211 = llxell = b2S1 - 1 + b2S1 -1 = 11 > 0 
t----,oo CS1 C 

for all initial conditions x (0) E int (Rt) and conclude that this model is 
persistent with respect to 0 2 . 

All the facts we learned about the juvenile-adult model (3.2), as an 
example used to illustrate the stability notions in this section, were (with 
the exception of an application of the Linearization Principle) based on 
having available a solution formula for this special model. The avail­
ability of a solution formula for a nonlinear matrix model is, however, a 
very rare exception. To analyze the existence and stability properties of 
equilibria in the absence of solution formulas requires other methods, 
to which we turn our attention in the following sections. 

3.3. The Extinction Equilibrium and Its Stability 

A basic question concerning a biological population is whether or not 
it is threatened with extinction. From a modeling point of view, this 
question concerns the stability properties of the extinction equilibrium 
Xe = Om. To apply the Linearization Principle of Theorem 3.9 to the 
extinction equilibrium xe = Om of the matrix equation (3.6), we need to 

1The adjective "uniformly" indicates that J? is independent of the initial condition x(O ). 
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calculate the Jacobian of f(x) = P (x) x, evaluate the answer at Xe = Om, 
and study the eigenvalues of the resulting matrix. It is left as Exercise 
3.40 to show that this Jacobian equals the inherent projection matrix 
P (Om), that is to show that 

Jxf(Om) = P (Om). 

The Linearization Principle therefore directs our attention to the spectral 
radius 

ro := p (P (Om)) 

of the inherent projection matrix P (Om). We refer to r0 as the inherent 
(density-free) population growth rate. 

3.3.1. The Extinction Equilibrium and r0 • An application of the Lin­
earization Principle (Theorem 3.9) gives part (a) of the following theo­
rem. 

Theorem 3.13. Assume the population projection matrix (3.7) satisfies 
Assumption 3.3. 

(a) The extinction equilibrium Xe = Om of the matrix model equa­
tion (3.6) is locally asymptotically stable if r0 < 1 and unstable 
if ro > 1. 

(b) Assume further that Assumption 3.5 holds. Ifr0 > 1, then (3.6) 
is persistent with respect to Xe = Om. 

A proofof part (b) can be found in [92]. 

Example 3.14. For the juvenile-adult model in Example 3.10, the inher­
ent projection matrix (3.10) has spectral radius (dominant eigenvalue) 

ro = max{l✓b2rd, I - ✓b2r12I} = ✓ b2T12• 

By Theorem 3.13, the extinction equilibrium is stable for b2r12 < 1. For 
b2r12 > 1, the extinction equilibrium is unstable and the model is per­
sistent with respect to it. □ 

In fact, the same conclusions reached in Example 3.14 are valid for 
the general semelparous juvenile-adult model with projection matrix 

(3.11) 
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since, by the normalizations (1.10) contained in Assumption 3.3, the in­
herent projection matrix is identical to that in the juvenile-adult model 
in Example 3.14. 

Example 3.15. The population whose dynamics are described by the 
general juvenile-adult model with projection matrix (3.1) is iteroparous 
if the inherent adult survival probability is not zero (i.e., s2 i= O). The 
inherent projection matrix 

(3.12) 

has eigenvalues 

1 \/2 1 1 ✓ 2 Ai = 2 s2 + 2 s2 + 4b2si and A2 = 2 s2 - 2 s2 + 4b2si, 

A bit of algebra shows that Ai > IA2 1; hence, the inherent population 
growth rate is r0 = Ai. By Theorem 3.13, the extinction equilibrium 
x = 02 is stable if 

1 1 ✓ 2 ro = 2S2 + 2S2 + 4b2Si < 1, 

and the equation is persistent with respect to x = 02 if 

□ 

3.3.2. The Extinction Equilibrium and R0 • The 2 x 2 inherent pro­
jection matrix (3.12) in Example 3.15 is an extended Leslie matrix with 
reproduction number 

Si 
Ro= b2-l--, 

-S2 
which we call the inherent reproduction number for this matrix equa­
tion. It is not difficult to verify that the conclusions in Example 3.15 
can be restated with the inherent population growth rate r0 replaced by 
inherent reproduction number R0 . (See Exercise 3.36.) 

As pointed out in Chapter 2, for higher-dimensional linear models, 
a formula for r0 is generally not available, while a formula for the repro­
duction number R0 is often available. We can take advantage of this fact 
and apply it to the inherent projection matrix P (Om) associated with 
a nonlinear matrix model. For a matrix model with projection matrix 
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P (x) = F (x) + T(x), the Jacobian evaluated at the extinction equilib­
rium is the inherent projection matrix: 

Motivated by the definition of R0 for linear matrix equations given in 
Section 2.3, we define the inherent reproduction number R0 for a non­
linear matrix equation as follows. 

Definition 3.16. Consider a nonlinear matrix model with projection 
matrixP(x) = F(x)+T(x)forwhichp(T(Om)) < 1. Theinherent(or 
intrinsic) reproduction number2 is 

Theorem 3.13 together with Theorem 2.15 yield the following result. 

Theorem 3.17. In addition to Assumptions 3.3 and 3.5, assume that 
p (T (Om)) < 1. Then the conclusions of Theorem 3.13 hold with r0 re­
placed by R0 . 

Example 3.18. The general m-dimensional nonlinear Leslie model 
has fertility and transition matrices 

b1/31 (x) b2 /3ix) bm-1/3m-1 (x) bm/3m(x) 
0 0 0 0 

F(x) = 0 0 0 0 and 

0 0 0 0 

0 0 0 0 
S1 CJ1 (x) 0 0 0 

T(x) = 0 s2cri(x) 0 0 

0 0 Sm-1 CJm-1 (x) SmCJm(x) 

20ver the years various other names for this quantity have been used, including reproductive 
value and reproduction rate. 
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where all p/Om) = er/Om) = 1. Note that the eigenvalues of the inher­
ent transition matrix3 

0 
0 
0 

0 
0 
0 

0 0 Sm-l Sm 

are Sm and O (with multiplicity m - 1). Hence, the requirement 
p (T(Om)) = Sm < 1 is met. The inherent reproduction number R0 is 
given by formulas (2.29)-(2.30), namely 

m-1 l 
Ro= I bini + bmnm-1 _ 

i=l Sm 

where 

{ 
1 for i = 1 

J[i= S1S2···Si-l fori=2,3, .. ·,m 

By Theorem 3.17, the extinction equilibrium is stable if R0 < 1. The ex­
tinction equilibrium is unstable, and the model is persistent with respect 
to it, if R0 > 1. □ 

Example 3.19. A nonlinear version of the matrix model whose life cycle 
graph appears in Figure 2.5, which was used to study the dynamics of the 
American bullfrog, has the projection matrix 

P(x) = I 0 0 0 0 b1sP1s(x) 

S21 CT21 (x) 0 0 0 0 
0 S32CT3z(x) 0 0 0 
0 S42CT4z(X) S43CT4ix) 0 0 
0 0 0 S54CT54(X) S55CT55(X) 

with p15(0m) = cri/Om) = 1. 

Note that the eigenvalues of the inherent transition matrix (a triangular 
matrix) 

0 0 0 0 0 

S21 0 0 0 0 

T(Om) = 0 S32 0 0 0 
0 S42 S43 0 0 
0 0 0 S54 S55 

3Recall that the eigenvalues of a triangular matrix appear along the diagonal. 
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are O (with multiplicity 4) and s55 ; hence, p(T(Om)) = s55 < 1. The 
inherent reproduction number R0 was calculated in Section 2.5.2 to be 

1 1 
Ro= b1sS21S4zS54-1-- + b1sS21S3zS43S54-1--, 

- S55 - S55 

which can be used in Theorem 3.17 to determine the stability properties 
of the extinction equilibrium. 

For example, using the parameter estimates given in the applica­
tion to the American bullfrog given in Section 2.5.2, we saw that R0 ~ 

4.84x10-1 < 1. Thus, for any nonlinear version of this model with these 
particular parameter estimates, the extinction equilibrium is stable. □ 

3.3.3. Global Stability of the Extinction Equilibrium. Recall that 
local asymptotic stability of an equilibrium does not necessarily mean 
that all solutions x (t) approach the equilibrium as t --+ oo, but only 
those whose initial conditionx(O) is sufficiently close to the equilibrium. 
Thus, when r0 < 1 (or R0 < 1), Theorem 3.13 or Theorem 3.17 does not 
necessarily imply that all solutions of a matrix model will approach the 
extinction equilibrium Xe = Om as t --+ oo. (We saw this in Chapter 1 
when we discussed the strong Allee effect.) The following theorem pro­
vides a criterion, one that can often be verified in applications by simple 
observations of the entries in the projection matrix, that is sufficient to 
guarantee the global asymptotic stability of xe = Om (i.e., global extinc­
tion) when r0 < 1. 

Theorem 3.20. Assume the population projection matrix (3.7) satisfies, 
in addition to Assumption 3.3, the inequality 

(3.13) P (x) ::; P (Om) for all x E R':1. 

Then the extinction equilibrium Xe = Om of the matrix model equation 
(3.6) is globally asymptotically stable on R':1 if r0 < 1. If in addition 
p (T (Om)) < 1, then xe = Om is globally asymptotically stable on R':1 if 
Ro< 1. 

The inequality (3.13) means that all of the entries of P (x) satisfy 
Pij (x) ::; Pij (Om) for all x E R':1; that is to say, either the effect of 
population density on an entry pij is absent (i.e., PiJ (x) = pij (Om)) 
or it decreases pij (x) from the inherent (density-free) value PiJ (Om). If 
all density effects are harmless or deleterious in this sense, then (3.13) 
holds, and the matrix model predicts global extinction for r0 < 1. 
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Proof. We know by Assumption 3.3 that, for any initial condition 
x (0) E IR.'.;1, the solution of the matrix equation (3.6) satisfies x (t) E IR.'.;1 
for all t E Z+. Therefore, by 3.13, 

(3.14) Om ::::; X (t + 1) = P (x (t)) X (t) ::::; P (Om) X (t) 

for all t E Z+. Let y (t) be the solution of the linear matrix equation 

(3.15) y(t + 1) = P(Om)y(t) 

with initial condition y (0) = x (0). From(3.14), we see that 

Om::::; x(l)::::; P(Om)x(0) = P(Om)y(0) = y(l) 

and that ifx(t)::::; y(t) for any t E Z+, then 

Om::::; x(t + 1)::::; P(Om)x(t)::::; P(Om)y(t) = y(t + 1). 

It follows by induction that 

(3.16) Om::::; x(t)::::; y(t) for all t E Z+. 

Since y(t) satisfies the linear matrix equation (3.15) and since r0 

p (P (Om)), it follows by Theorem 2.7 that y(t) ➔ Om for all y(0) E IR.'.;1 
and, as a result of inequality (3.16), that x (t) ➔ Om for all initial condi­
tions x (0) E IR.'.;1. □ 

One can often make use of the global stability test criterion (3.13) by 
simple observation of the entries PiJ (x). For example, all entries in the 
projection matrix 

from Ebenman's model (3.3) either are unaffected or are decreasing as 
functions of x1 and x2 . Thus, (3.13) holds, and the extinction equilib­
rium of this matrix equation model is globally asymptotically stable if 
r0 = ✓b2 s1 < 1. 

3.4. Positive Equilibria: A Basic Bifurcation Theorem 

Theorem 3.13 and its Theorem 3.17 show that the extinction equilibrium 
of a matrix model 

(3.17) x(t + 1) = P (x(t)) x(t) 
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destabilizes as the inherent population growth rate r0 = p(P(Om)), or 
the inherent reproduction number R0 , increases through 1. In Chapter 
1, we saw for the case m = 1 that, in general, this loss of stability results 
in the creation of a branch of positive equilibria that bifurcates from the 
extinction equilibrium at r0 = 1 (equivalently R0 = 1). This basic bi­
furcation result when m = 1 provides the existence of positive equilib­
ria and relates their stability to the direction of bifurcation, at least in 
a neighborhood of bifurcation point x = 0 at r0 = 1. Our goal in this 
section is to extend this basic bifurcation phenomenon to matrix model 
equations (3.17) of dimension m > 1. 

We assume Assumptions 3.3 and 3.5 are in force. Let v and w be, 
respectively, right and left (positive) eigenvectors of the inherent pro­
jection matrix P (Om) = [Pij (Om)] associated with the dominant eigen­
value r0 = p (P (Om)). When r0 = 1, define the quantity 

(3.18) 

where 

r 
0~1 Pij j j 

vop-- = 0~2Pij = 
X l) : 

a~mPij DxmPij (x)lxe=O 

Dx1 Pij (xte=O 

Dx2 Pij (x)lxe=O 

is the gradient of the projection matrix entry Pij (x) evaluated at Xe = Om 
and r0 = 1. Note that the superscript "O" denotes, as it always will, an 
evaluation of the expression at the bifurcation point Xe = 0, r0 = 1. We 
saw K when m = 1 in Chapter 1 (formula (1.28) in Section 1.2.1). 

The following basic bifurcation theorem provides existence and sta­
bility results for positive equilibria of a general matrix equation (3.17); it 
follows from Theorems 3.1 and 4.1 in [44]. 

Theorem 3.21. Assume the projection matrix of the matrix equation 
(3.17) satisfies Assumptions 3.3 and 3.5. 

(a) IfK i- 0, thenforr0 nearl thereexistequilibriaxneartheextinc­
tion equilibria Om, and their Taylor expansion has the form 

WTV 2 
x = -K-v (r0 - 1) + 0 ( (r0 - 1) ) . 

It follows that if K > 0, then the equilibria x E int (RYf!) are 
positive for r0 ~ 1, in which case the bifurcation is said to be 
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forward. If JC < 0, then the equilibria x E int (Rr:1) are positive 
for r0 ~ l, and the bifurcation is said to be backward. 

(b) Suppose P (Orn) is primitive when r0 = l. Then JC > 0 implies 
that the positive equilibria for r0 ~ 1 are (locally asymptotically) 
stable. If JC< 0, then the positive equilibria for r0 ~ 1 are unsta­
ble. 

When JC> 0 in Theorem 3.21(b), stable positive equilibria come into 
existence as r0 increases through 1; we call this a forward-stable bifur­
cation. When JC< 0, we call the bifurcation backward-unstable. The 
adjectives "forward" and "backward" come from the geometric view of 
the bifurcation when equilibria are plotted as functions of the bifurca­
tion parameter, which is denoted in the usual way along a horizontal axis 
oriented with increasing values to the right. Thus, the direction of bifur­
cation and the stability properties of the bifurcating positive equilibria 
are correlated, and we say that the direction of bifurcation determines 
stability.4 Moreover, Theorem 3.21 tells us that it is the sign of JC that de­
termines the direction of bifurcation (and hence the stability properties 
of the positive equilibria). 

The strength of Theorem 3.21 is its generality. To apply it involves 
only the determination of the sign ofJC (one does not need to calculate it, 
but only determine its sign), and from this, one gets existence and sta­
bility results for positive equilibria. One thereby avoids having to prove 
the existence of solutions to the equilibrium equation x = P (x) x and 
perform a linearized stability analysis of them. 

It is also important to note the shortcoming of the theorem, which 
is that it yields the existence and stability properties of positive equilib­
ria only in a neighborhood of the bifurcation point (i.e., for r0 near 1 and 
positive equilibria near the extinction equilibria). In population models, 
there can be (and usually are) positive equilibria outside a neighborhood 
of the bifurcation point (whose existence and stability properties have to 
be dealt with in other ways). For example, we see in Section 3.5.4 in 
Chapter 1 when m = l how hysteresis and backward bifurcations can 
lead to multiple attractor scenarios when equilibria outside a neighbor­
hood of the bifurcation point are taken into account. 

4Sometimes a forward bifurcation is said to be supercritical or to-the-right and a backward bifur­
cation is subscritical or to-the-left. 
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The inherent growth rate r0 does not, in general, appear explicitly 
in a matrix equation. Instead it derives from the entries in the inherent 
projection matrix P (Om) and hence is a function of some or all param­
eters appearing in the model. Given the lack of an explicit formula for 
r0 in terms of these parameters, it can be a challenge to determine when 
r0 passes through 1 when a selected model parameter of interest is ma­
nipulated. For a model with specific numerical values for the inherent 
parameters, this can be studied by numerical means with the aid of a 
computer. For a more general study of the bifurcation when r0 passes 
through 1, we turn to the reproduction number R0 , for which one often 
has an explicit formula, as we saw in Chapter 2. Combining Theorem 
3.21 with Theorem 2.15, we have the following bifurcation result for a 
general matrix equation (3.17). 

Theorem 3.22. If p (T (Om)) < 1, then Theorem 3.21 holds with R0 in 
place ofr0• 

The sign of the diagnostic quantity K determines the direction of bi­
furcation in Theorems 3.21 and 3.22. Since the eigenvectors wand v 
are positive vectors, we see from the formula (3.18) for K that its sign 
depends on the partial derivatives axk Pij (0) of the entries Pij (x) in the 
projection matrix with respect to the densities xi in the population vector 
x = col(xi)(evaluated at the bifurcation point r0 = 1). These derivatives 
measure the effects that increases in low level densities have on the vital 
rates modeled by the entries pij (x). One can often make use of this ob­
servation and apply the theorems by simply "eyeballing" the entries in 
the population projection matrix. Here is an example. 

Corollary 3.23. The bifurcation of positive equilibria in Theorem 3.21 (or 
in Theorem 3.22) is forward-stable if all axk Pij (0) ::S: O and at least one is 
negative. 

Example 3.24. The projection matrix P (x) = F (x) + T (x) with 

F (x) = [ ~ b l+i2x2 ] , T (x) = [ 0
1 ~ ] , 

Si l+c1x 1 

Ci, c2 > 0, b > 0, and O < Si, s2 < 1 

defines the dynamics of a juvenile-adult population (the unit of time is 
the juvenile maturation period) in which the only effects of density are 
those of adults on their fertility rate and juveniles on their own survival 
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rate. Since s2 > 0, we see by Theorem 2.12 that the inherent projection 
matrix 

P (02) = [ 0 b ] 
S1 Sz 

is primitive (unlike the semelparous models of Ebenman in Example 
3.1), as is required in Theorems 3.21 and 3.22. 

Since the only density factors 1/(1 + cixi) in the projection matrix 
are (strictly) decreasing functions of xi ~ 0, we conclude from Corollary 
(3.23) that K > 0 and that a forward-stable bifurcation occurs at r0 = 1 
or equivalently R0 = 1. 

In this m = 2 dimensional example, formulas for both r0 and R0 , 

in terms of the three entries in P (02 ), are readily available. From the 
quadratic characteristic polynomial ,;i,2 - s2 ,;i, - bs1 of P (02), we obtain 

r0 = ½s2 + ½✓ s~ + 4bs1. 

The projection matrix P (02 ) is a Leslie matrix for which (Chapter 1) 

R - b S1 o- --. 
1- S2 

From either of these formulas, we can see how changes in any or all of 
the inherent rates b, s1 , and s2 in P (02 ) can cause r0 and R0 to increase 
through 1 and, as a result, cause a forward-stable bifurcation of positive 
equilibria. For example, increasing the adult birth rate b through b0 = 
(1 - s2 ) /s1 causes a forward-stable bifurcation. See Figures 3.2 and 3.3. 

For more on this juvenile-adult model, see Exercise 3.41. □ 

We can use several kinds of graphs to visualize the bifurcation phe­
nomenon in Theorem 3.21 geometrically. In Chapter 1, when m = 1, 
we drew bifurcation diagrams by plotting equilibria as a function of a 
selected bifurcation parameter. For models of higher dimension m ~ 2, 
equilibria are vectors, and we have to decide how to represent them in a 
similar bifurcation diagram. One way is to plot a selected component of 
the equilibrium vector and plot it against the bifurcation parameter. For 
example, for the juvenile-adult model in Example 3.24, we could plot ei­
ther the juvenile or adult component of the equilibrium as a function of 
b. Another option is to plot the total population size I lxl I = L~1 xi. See 
Figure 3.2. 
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Figure 3.2. Shown are two bifurcation diagrams for the iteroparous 
juvenile-adult model in Example 3.24 using b as the bifurcation pa­
rameter. One plot shows the adult componentx2 of the positive equi­
libria, while the other plot shows the total population size x 1 + x2 . 

The extinction equilibrium destabilizes at b0 = (1 - s2) /s1 where a 
forward-stable bifurcation occurs. Model parameter values used are 
SJ = 0.8, s2 = 0.4, CJ = 0.1, and c2 = 0.01, which yields b0 = 0. 75. 
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Figure 3.3. One sample solution of the iteroparous juvenile-adult 
model in Example 3.24, with initial conditions x (0) = col(0, 50) and 
the same parameter values as in Figure 3.2, is shown as time series 
and as an orbit in the (xJ, x2)-plane in the plots in column (A) with 
b = 0.5 < b0 = 0.75 and in column (B) with b = 2 > b0 . The 
population goes extinct in (A) and survives in (B), as predicted by 
Theorem 3.21. 
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We can also illustrate equilibria and their stability properties by 
time series plots of the components xi (t) of selected sample solutions 
x(t) = col(xi (t)). See Figure 3.3(A) for the juvenile-adult model in Ex­
ample 3.24. For that example, and other m = 2 dimensional models, 
we can also plot selected orbits x(t) = col(x1 (t) ,x2 (t)) in the phase 
plane (x1 , x2)-plane, as in Figure 3.3. 

Example 3.25. Nonlinear Leslie matrices with fertility and transitions 
matrices F(x) and T(x), as described in Example 3.18, have been widely 
used to model fish populations. For example, the matrix model with 
density dependence appearing in only the age-class specific fertility rates 
(called recruitment rates in fishery models) 

F(x) = r 

bi{31(x) b2J3zCx) bm-1/3m-l (x) bmJ3m(x) 

j and 
0 0 0 0 
0 0 0 0 

0 0 0 0 

0 0 0 0 
S1 0 0 0 

T(x) = 0 S2 0 0 

0 0 Sm-1 Sm 

with bi ~ 0 and O < si < 1 for all i and bm > 0 

is studied in [102] with fertility density factors of Ricker form 

where Pi = ~facl WijXj is a weighted total population density with 
weights wij ~ 0 (but not all 0). The reason a weighted total popula­
tion is used is that not all classes necessarily have the same effect on the 
fertilities of their own or other age classes. The use of such exponentially 
decreasing factors in fishery models is attributed to W. E. Ricker [117], 
[118]. 

Some density effects can be absent, but we assume not all are (oth­
erwise the model is linear), that is we assume at least one ci > 0. Then, 
because these exponential density effects are decreasing functions of Xi, 
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we are assured K > 0 and, by Corollary 3.23, that a forward-stable bifur­
cation of positive equilibria occurs as r0 , or equivalently 

m-1 l 
Ro= I bini + bmnm-1 _ and 

i=l Sm 

for i = 1 
for i = 2, 3, • • • , m ' 

increases through 1. □ 

Historically, negative density effects, by which we mean a decrease 
in an entry in the projection matrix with an increase in population den­
sity (i.e., axkPij (Om) < O), are the most common density effect found 
in population models. This is because it is generally assumed that in­
creased density leads to lower survival and fertility rates, through such 
things as competition for food, mates, nesting sites, and so on. How­
ever, as discussed in Chapter 1, positive density effects when popula­
tion densities are low(which are called Allee component effects) have 
been documented in many biological populations. They can be the result 
of numerous mechanisms, including enhanced protection from preda­
tors, cooperative hunting or offspring rearing, ability to local mates, and 
many more [26]. A model that includes such a density effect would in­
clude one or more positive derivatives axk Pij (Om) > 0. In this case, as 
one can see from the formula (3.18), there is the possibility that K < 0 
and that, as a result, the bifurcation of positive equilibria at r0 = 1 (or 
R0 = 1) is backward-unstable. If, in the projection matrix of a model, 
both positive and negative effects at low densities are present and hence 
derivatives axk pij (Om) of different signs occur, then K needs to be calcu­
lated in order to determine if it is positive or negative. 

Consider the general juvenile-adult matrix model with fertility and 
transition matrices 

[ o b{3
0
(x) ] 

(3.19) F (x) = 0 and T (x) = [ O( ) O ] 
S1 CT1 X s2cr2 (x) 

with b > 0, 0 < Si, s2 < 1, 

and x = col (xi, x2). The inherent projection matrix and inherent repro­
duction number are 
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and 

(3.20) 
1 

R0 = bs1--
1- s2 

(see Example 3.15). When R0 = 1, the matrix P (02 ) has right and left 
eigenvectors 

Vo=[ 1-S1S2] o [ S1] and w = 1 , 

respectively. The direction of the bifurcation of positive equilibria that 
occurs when the extinction equilibrium destabilizes as R0 increases 
through 1 is determined by the sign of K. The matrix 

[ 0 01 - [ 0 VxPij. V - no 0 
YxO'l ·V 

l-s2 V0/3, VO ] 
S1 X 

V~u2 · v 0 

l~ls2 ((1- Sz) 8;1/3 + S18;2/3) ] 
(1 - S2) 8;1 0'2 + S18;2 0'2 

appears in the formula (3.18) for K, and a calculation shows 

x = s1 (1 - s2i (-8~1 /3) + si (1 - sz) (-at/3) 
(3.21) + (1 - Szi (-8f O'x1 ) + S1 (1 - S2) (-ag O'x1 ) 

+s1 (1 - S2) ( -8f O'xJ + Si ( -ag O'xJ, 

As complicated as this formula is, we see that it is a linear combination 
(with positive coefficients) ofall thederivatives-8x;/3j (x) and-8x;O'j (x) 
appearing in the model, evaluated at Xe = 02 . If derivatives of mixed 
signs occur, then the direction of bifurcation is determined by the sign 
of this linear combination. Here is an example. 

Example 3.26. In the juvenile-adult model with projection matrix 
(3.19), the term b/3 (x) is the per capita density of newborns produced 
during a unit of time that survive to the next census. Write the inherent 
per adult fertility rate (per unit time) as b = brnswhere brn is its maximal 
possible newborn production if all newborns were to survive to the next 
census time and where s is the fraction that do in fact survive. Assume, 
in addition, that the production of newborns is a decreasing function of 
adult density, modeled by 

b 1 
rn 1 + cx2 ' 

C > 0, 
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but that newborn survival is an increasing function of adult density (be­
cause adults provide, as a group, protection from predators), modeled 
by 

1 + ax2 s---, O<s<l, a>O. 
1 + sax2 

Note that this latter assumption implies newborn survival probability 
is s when x2 = 0 and tends to 1 as adult density x2 increases without 
bound. The coefficient a measures the strength of the adult protection 
of newborns, at low density, in the sense that 

_!!:__ (s 1 + ax2 )I = as (1 - s)' 
dx2 1 + sax2 Xz =O 

which means a larger value of a > 0 yields a faster increase in newborn 
survival when adults density increasing. We call a the Allee coefficient. 

These assumptions lead to 

1 1 + ax2 b = bms and /3 (x) = 1 1 + cx2 + sax2 
in the projection matrix (3.19). Here, 

bm, c, a> 0 and O < s < 1. 

Assuming no density dependence in the juvenile or adult survival rates, 
we have the fertility and transition matrices 

[ 
0 b 1 1+ax2 ] 

(3.22) F (x) = O mS l+c;z l+sax2 and T (x) = [ O O ] 
S1 S2 . 

We know that the extinction equilibrium destabilizes as 

S1 
(3.23) Ro = bms-1 -- S2 

increases through 1 and that a bifurcation of positive equilibria occurs 
as a result. But is the bifurcation forward-stable or backward-unstable? 

From formula (3.21), we have 

K = -Si (1 - S2) 8~2 /3, 
and a calculation shows 

K = ssrbm (1 - S2) (c - (1 - s) a). 

The sign of K is the same as that of the factor c - (1 - s) a. We conclude 
by Theorem 3.22 that the bifurcation at R0 = 1 is 
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• backward-unstable if~ > 1~s; 

• forward-stable if~ < -1-. 
C 1-s 

In other words, if the Allee coefficient a is small relative to the negative 
density effects on the fertility, as measured by c, then the bifurcation is 
forward-stable. 

On the other hand, if the Allee coefficient a is large enough rela­
tive to c, then the bifurcation is backward-unstable. In this case, the 
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Figure 3.4. These plots illustrate a backward bifurcation, and the re­
sulting strong Allee effect, that can occur in the juvenile-adult model 
in Example 3.26. Plot (A) shows the (backward) bifurcation diagram 
by plotting total population size at equilibrium as a function of R0 

whens = 0.20, s1 = 0.35, and s2 = 0.85. Plot (B) shows the time 
series of total population size x1 (t) + x2 (t) for two sample solutions 
when Ro = 0. 70 (i.e., bm = 1.5). Model coefficients are c = 0.10 and 
a= 0.45, and the initial conditions are col(x1 (0), x2 (0)) = col(0, 4) 
and col (0, 3). The first leads to survival and the second to extinction, 
which is the signature of a strong Allee effect. The two plots ( C) and 
(D) show the time series of the individual juvenile and adult classes 
for the two solutions shown in (B). Plot (E) shows the orbits of these 
two solutions in the phase plane. 

' 
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expectation is that a strong Allee effect occurs and that for R0 < 1 there 
exit stable positive equilibria outside the neighborhood of the bifurca­
tion point. That this does occur in this model is illustrated by sample 
numerical simulation examples shown in Figure 3.4. □ 

It is important to remember that the bifurcation Theorem 3.21 and 
Theorem 3.22 are local bifurcation results; that is to say, they imply the 
existence and stability properties of positive equilibria only in a neigh­
borhood of the bifurcation point (i.e., for r0 and R0 near 1 and positive 
equilibria near the extinction equilibria). The strength of these results is 
their generality, making them applicable to a most (if not the vast ma­
jority) of models used in population dynamic modeling. They do not, 
however, account for positive equilibria and parameter values outside a 
neighborhood of the bifurcation point. 

3.5. Secondary Bifurcations 

The existence and stability properties of positive equilibria outside a 
neighborhood of the bifurcation point must be ascertained by methods 
other than the local bifurcation results in Theorem 3.21 and Theorem 
3.22. For them= l dimensional case, we saw in Chapter 1 that the sta­
bility properties of the bifurcating positive equilibria might not persist 
outside a neighborhood of the bifurcation point. For example, we saw in 
Figure 1.5 that the positive equilibria from forward-stable bifurcation of 
the Ricker equation destabilize as r0 = R0 = b0 increases and results in 
a bewildering sequence of bifurcations that involve periodic cycles and 
ultimately "chaos." On the other hand, we saw that the positive equilib­
ria of the discrete logistic equation remain stable for all b0 = r0 = R0 . 

Also, in Chapter 1, we saw unstable positive equilibria from a backward­
unstable bifurcation become stable at a tipping point (tangent bifurca­
tion) that creates a strong Allee effect; see Figure 1.3. Therefore, it is rea­
sonable to expect that such phenomena can also occur in matrix models 
of dimension m > l. 

These examples, in the m = l case, show that the nature of the dy­
namics, outside of a neighborhood of the "primary" bifurcation point 
xe = Orn at r0 = 1, is highly dependent on special features of the model 
equation under consideration and that general results concerning the 
existence and stability of equilibria ( or of other attractors, such as pe­
riodic cycles) will not be possible without more restrictive assumptions 
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on the model's nonlinearities than those required for Theorem 3.21 and 
Theorem 3.22. 5 

Consider the case of a forward-stable bifurcation as the extinction 
equilibrium destabilizes when Y0 or R0 increases through 1. The result­
ing positive equilibria for Yo > 1, which are stable for Yo i;; 1, might 
destabilize for larger values of Yo, say as Yo increases through a number 
Y0 > 1. That is to say, the positive equilibria are stable for Y0 < Y0 and 
unstable for Yo i;; Y0. By the Linearization Principle this occurs if the Ja­
cobian associated with the matrix model, when evaluated at the positive 
equilibria, has an eigenvalue ;i, that leaves the unit circle in the complex 
plane (i.e., IAI < 1 for Yo < Yo and IAI > 1 for Yo i;; Yo), Recall that 
eigenvalues, being roots of the characteristic polynomial, are either real 
or come in complex conjugate pairs. 

An eigenvalue can leave the unit complex circle in one of three ways: 
A can leave the unit complex circle through+ 1, -1, or a complex number 
a+ i/3, {3 =J. 0 with a2 + {32 = 1. In the latter case, the eigenvalue's com­
plex conjugate also leaves the complex unit circle. Each of these three 
cases results in a different kind of bifurcation. In the + 1 case, the bifur­
cation involves equilibria, while in the -1 case, it involves 2-cycles. In 
the complex case, the bifurcation involves a more complicated attractor 
(to be described as follows). In this section, we informally describe and 
give examples that illustrate the basic kinds of bifurcations that typically 
occur in these cases. We do not attempt a complete list of all possibilities, 
since that is beyond the scope of this book (and is unnecessary for our 
applications to population dynamics). More rigorous mathematical the­
orems concerning these bifurcations (which can be found in [62], [63] 
and in many other advanced books on bifurcation theory) involve the 
calculation of diagnostic quantities that determine the nature of the bi­
furcation (its direction, the stability properties of the attractors involved, 
etc.), some of which are straightforward, but others of which can be diffi­
cult or even intractable to use in applications. A common practice in the 
latter case is to utilize numerical simulations to determine the detailed 
nature of a bifurcation, which will be our approach in this section. 

Our focus will remain on local bifurcations, by which we mean 
those that occur in a neighborhood of a bifurcation point and can be 

5 An exception is that, in general, the bifurcating branch of positive equilibria has been shown to 
have a global extent [28], [31]. 
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studied by means of linearization procedures. Other types of bifurca­
tions for which this is not possible, called global bifurcations, can math­
ematically occur in nonlinear models but have not played a significant 
role (to date) in structured population dynamics. For this reason, we do 
not discuss them here. 

We saw in Chapter 1, by means of the famous Ricker difference 
equation (Example 1.15), that bifurcations to new types of attractors can 
also occur when nonequilibrium attractors, such as periodic cycles, 
destabilize. The bifurcation diagram in Figure 1.5 associated with the 
Ricker equation is an iconic example of what is possible for a nonlinear 
model as r0 increases: repeated bifurcations occur as attractors destabi­
lize and new ones appear, ultimately resulting in very complicated at­
tractors and dynamics. Of course, such a so-called route-to-chaos does 
not always occur, as the discrete logistic equation (which has no sec­
ondary bifurcations at all) shows; see the bifurcation diagram for the 
discrete logistic equation in Figure 1.3(A). Of course we would expect 
(and will see in following examples and applications) the same breadth 
of dynamic and bifurcation possibilities for nonlinear matrix models of 
dimension m > 1 as well. 

Before we have a look at bifurcations in nonlinear matrix models, we 
pause for a moment to look at m = 2 dimensional linear matrix equa­
tions x (t + 1) = Px (t) where P is a 2 x 2 matrix with eigenvalues J1 

and J2 , which we assume are different (J1 i= ,12). This will offer some 
insight into the three basic bifurcations for nonlinear matrix equations 
to be discussed as follows. 

If v 1 and v2 are eigenvectors associated with ,1, 1 and J2 , respectively, 
then they are independent because ,1, 1 i= A2, and we can use them as a ba­
sis of R 2 . For any initial conditionx (0) E R 2 , we havex (0) = c1v1 +c2v2 

for scalar coordinates ci, and by iteration of the linear matrix equation, 
we get the solution formula 

(3.24) 

Consider the following scenario. We start with both eigenvalues satisfy­
ing I Ji I < 1 (i.e., they lie inside the unit disk in the complex plane) and 
then continuously change ,11 so that eventually IJ1 I > 1, all the while 
keeping J1 i= J2 . To do this, J1 must cross the boundary of the unit disk 
(i.e., at some point IJ1 I = 1). We distinguish three possibilities when this 



122 3. Nonlinear Matrix Models for Structured Populations 

occurs: (i) Ai = 1, (ii) Ai = -1, and (iii) Ai = eiB and Az = e-iB for some 
polar angle o < e < n. 

In case (i), we find that x (t) - Ci Vi = c2A1 v2 ➔ 0 as t ➔ oo (since 
IA2 I < 1 ). Note that Ci Vi is an equilibrium. This is because it is 0 2 if c1 = 
O and it is an eigenvector of P associated with eigenvalue + 1 if c1 i= 0. 
We conclude in this case that all solutions approach an equilibrium. 

In case (ii), we find that x (t) - c1 (-li v 1 = c2A1 v2 ➔ 0 as t ➔ oo. 

Note that (-1/ vi is a solution of the matrix equation (as an exercise, the 
reader should check this) which is periodic with period 2. We conclude 
in this case that all solutions approach approach a 2-cycle. 

Case (iii) is more complicated. The eigenvalues and their eigenvec­
tors are complex conjugates, as are the coordinates ci. Thus, the solution 
formula (3.24) becomes x (t) = 2 Re(cieiBtvi) which, ifwe write 

Ci = a+ bi, eiBt = cos et + i sin et, 

(where a, band ui, vi are real), becomes 

x(t) = [ (aui -bvi)coset-(avi + bui)sinet ] 
(3.25) (au 2 - bv2 ) cos et - (av2 + bu2) sin et . 

The solution x (t) is periodic with period p E Z+ ifand only if x (t + p) = 
x(t) for all t E Z+, which occurs if and only if cos e (t + p) = cos et 
and sine (t + p) = sin et or, in other words, e p = 2nq for some integer 
q E Z+. The solution in this case is a p-cycle if and only if e is "rationally 
related to 2n," by which is meant 2n I e is a rational number. Otherwise, 
the solution is a bounded and oscillatory, but not necessarily periodic. 
There is a sophisticated theory of such kinds of oscillatory or "almost 
periodic" functions, but it goes beyond the level of this book. For our 
purposes, suffice it to say that the solutions in this case are either peri­
odic or nonperiodic but bounded and oscillatory. Another fruitful way 
to view these solutions in this case is to plot their orbits in the (x1 , x2)­

plane. From analytic geometry, the plot of the solution (3.25) in this 
"phase-plane" lies on an ellipse centered at the origin, which is called 
an invariant loop. 

In summary, for a two-dimensional linear matrix equation, under 
the scenario previously described, the asymptotic dynamics involves 
equilibria when A1 = 1, 2-cycles when A1 = -1, and invariant loops 
of either periodic or non periodic oscillatory solutions when Ai = eiB. 
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These three cases and their associated dynamics play a role in bifur­
cations appearing in nonlinear matrix equations as well. In the sections 
that follow we give descriptions of these three basic types of bifurcations, 
but we will not delve into technical details (for which one can refer to any 
number of textbooks treating bifurcation theory; e.g., [63], [62], [132]). 

3.5.1. + 1 Bifurcations and Equilibria. The bifurcation caused by the 
destabilization of the extinction equilibrium Xe = Om, as described in 
Theorem 3.21 for the general matrix equation (3.17), is an example of a 
+ 1 bifurcation. This type of bifurcation occurs when an equilibrium xe 
destabilizes because an eigenvalue of the Jacobian leaves the unit circle 
in the complex plane by passing through + 1. 

The bifurcation in Theorem 3.21 is a special type of+ 1 bifurcation 
called a transcritical bifurcation because two different branches of 
equilibria intersect at the bifurcation point, specifically the branch of 
extinction equilibria and a branch of nonextinction equilibria. A trans­
critical bifurcation is characterized by the existence, in a neighborhood 
of a bifurcation point, of two equilibria for r0 on each side of the crit­
ical value r0 = r0 (i.e., there are two equilibria for r0 ~ r0 and two 
equilibria for r0 ~ r0). Moreover, an exchange of stability between 
the two branches typically occurs (but not always, as we will see in Sec­
tion 3.6). While Theorem 3.21 implies that a transcritical bifurcation 
involving the extinction equilibrium generally occurs in nonlinear ma­
trix models, transcritical bifurcations involving two branches of positive 
equilibria are not as commonly found in population models. 

A different type of+ 1 bifurcation is exemplified by the m = 1 di­
mensional model equations in Examples 1.16 and 1.21 that exhibit strong 
Allee and hysteresis effects. There is a loss ( or gain) of stability between 
the upper and lower branches of parabolic-shaped tipping points in the 
bifurcation diagrams, seen in Figures 1.3(C) and 1.4, because the eigen­
value of the Jacobian is passing through + 1. Such tipping points can also 
occur in m > 1 dimensional matrix equations. Here is an example. 

Example 3.27. Consider the juvenile-adult matrix model in Example 
3.26 with coefficients 

s = 0.20, s1 = 0.35, s2 = 0.85, c = 0.10, and a = 0.45 



124 3. Nonlinear Matrix Models for Structured Populations 

used in Figure 3.4. From the formula (3.23) for the inherent net repro­
duction number, we replace sbm by 

1- s2 
sbm = --R0 

S1 

in the projection matrix (3.22) to obtain 

p (x) = · 0 l+0.10x2 l+0.20(0.45)x2 • [ 
0 0 42857 R 1 1+o.4sx2 ] 

0.35 0.85 

In this example, we can solve the equilibrium equations 

1 1 + O.45X2 
X1 = 0.428 57Ro 1 + O.lOXz 1 + 0.20 (0.45) Xz X2 and 

Xz = O.35X1 + O.85Xz 

for equilibria col(x1, x2) =/. col(O, 0) as follows. Solve the second equa­
tion for x1 = O.43x2 and place the answer into the first equation. This 
gives an equation for x2 alone, which after a cancellation of a common 
factor of x2 from both sides and the clearing of fractions, results in a 
quadratic polynomial in x2 • The quadratic formula yields two positive 
solutions 

(3.26) Xz = 25Ro - 10.56 ± 25✓ R~ - O.67Ro + 0.49 X 10-3 

and hence two positive equilibria col(O.43x2 , x2) provided R0 lies in the 
interval 0.67 < R0 < 1. (The solution with the plus sign is also positive 

x 1+x2 
40 

30 

20 

10 

s u 
R 

0.6 0.7 o.e 0.9 1.0 O 

Figure 3.5. The bifurcation diagram for the juvenile-adult model 
in Example 3.27. The total population size at equilibrium is plot­
ted against the inherent reproduction number R0 , which shows a 
backward-unstable bifurcation at R0 = 1 and a + 1 bifurcation ( tip­
ping point) at R0 = 0.67. 
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for R0 ~ 1.) The tipping point is located at R0 = 0.67, where the two 
equilibria coalesce at col(x1, x2 ) = col(2.66, 6.19). A calculation shows 
that the Jacobian evaluated at this equilibrium when R0 = 0.67 is 

[ 0 0.43 ] 
0.35 0.85 

whose eigenvalues are + 1 and -0.15. This illustrates that the tipping 
point is a+ 1 bifurcation. See Figure 3.5. □ 

Suppose the eigenvalues of the Jacobian evaluated at an equilibrium 
are all real numbers. If all eigenvalues have absolute value less than 1 
(and hence the equilibrium is stable), then the equilibrium is called a 
stable node. If at least one eigenvalue has absolute value greater than 1 
(and hence the equilibrium is unstable), then the equilibrium is called a 
saddle node. If a+ 1 bifurcation occurs because an equilibrium changes 
from a saddle to a node, or vice versa, then the bifurcation is called a 
saddle-node bifurcation. The bifurcation at the tipping point R0 = 
0.67 in Example 3.27 is a saddle-node bifurcation. In Exercise 3.43, it is 
shown that the equilibria on the "upper" branch are stable, at least near 
the tipping point; also see Section 3.5.4. 

+ 1 bifurcations involve branches of equilibria (and typically an ex­
change or loss of stability between branches). There are other types of 
+ 1 bifurcations besides the transcritical and saddle-node bifurcations. 
If you restrict attention to a neighborhood of the bifurcation point, then 
a transcritical bifurcation is characterized by the changing number of 
equilibria from 2 to 1 to 2 when passing through the bifurcation point. 
For a saddle-node bifurcation, the equilibrium count changes from Oto 2 
or vice versa. Another type of+ 1 bifurcation, called a pitchfork bifurca­
tion, is associated with an equilibrium count change from 1 to 3 ( or vice 
versa). We will confine our attention in this book to transcritical and 
saddle-node bifurcations, which are the most common + 1 bifurcations 
in structured population models. 

3.5.2. -1 Bifurcations and 2-cycles. When an equilibrium destabi­
lizes because one (but not more than one) eigenvalue of the Jacobian 
evaluated at the equilibrium leaves the unit circle in the complex plane 
through -1, the result in general is the creation of 2-cycles (periodic so­
lutions of period 2). This bifurcation is called a period-doubling bifur­
cation (or a flip bifurcation). 
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We saw an example of a period-doubling bifurcation in them = 1 
dimensional Ricker equation (see Figure 1.5). The following example 
illustrates a -1 bifurcation in a higher-dimensional matrix model that 
results in a period-doubling bifurcation (and a route-to-chaos similar to 
that seen in the Ricker equation). 

Example 3.28. The m = 2 projection matrix 

p (x) = [ 0 
S1 

is an example of the general juvenile-adult projection matrix (3.19) in 
which adult fertility is negatively affected by increases in total popula­
tion size x1 + x2 • Figure 3.6 shows a bifurcation diagram for this matrix 
model with parameter values 

C = 1, 
1 

and s2 = 4, 

plotting total population size attractors against the inherent reproduc­
tion number 

The bifurcation diagram indicates a forward-stable bifurcation of pos­
itive equilibria at R0 = 1 (which we know follows from Theorem 3.17 
since the only density-dependent term in P (x) is strictly decreasing in x1 

and x2 ). The diagram also shows a loss of equilibrium stability, roughly 
R0 ~ 3, at which point there is a period-doubling bifurcation to 2-cycles. 
We can verify this loss of stability by means of the Linearization Principle 
as follows. 

From the projection matrix 

(3.27) [ 
0 ~ Roe-(x1 +x2) ] 

P (x) = 1 z : , 

we obtain the equilibrium equations 
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Figure 3.6. The bifurcation diagram, plotting total population size 
against R0 , for the juvenile-adult model in Example 3.28 shows a -1 

bifurcation at Ro = 3 and a period-doubling cascade to chaos as Ro 

increases. The displayed time series show sample solutions at three 
selected R0 values, namely 2.5, 5, and 20. At R0 = 2.5, the solution 
approaches an equilibrium; at R0 = 5, the solution approaches a 
2-cycle; and at R0 = 20, the solution approaches a 4-cycle. These 
different attractors are those predicted by the bifurcation diagram. 

-o-x. 
---- Xz 

16 20 24 

-o-x, 
---xi 

16 20 24 

whose solutions ( other than the extinction equilibrium) are, provided 
Ro> 1, 

3 ] 5 lnR0 
2 . 
5 lnR0 

The Jacobian matrix 

(3.28) 
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evaluated at this positive equilibrium is 

[ - i ln R0 i - i ln R0 ] 
5 l 2 \ • 

2 4 
It is left as Exercise 3.44 to show two things about the two eigenvalues 
of this matrix. First, both eigenvalues satisfy IJI < 1 for 

1 < Ro < R0 = exp (19°) ;:::; 3; 

hence, the positive equilibrium is stable for these R0 values. Second, as 
R0 increases through R0, one of the eigenvalues decreases through -1 
while the other satisfies IJI < 1 (at least for R0 not too large); hence, the 
positive equilibrium loses stability in a -1 bifurcation as R0 increases 
through R0. □ 

As pointed out in Section 1.2.3 form= 1 dimension difference equa­
tions, the existence and stability of 2-cycles of a matrix equation for any 
dimension m ~ 1 can be investigated by studying the equilibria of a 
composite of the matrix equation. Thus, for 2-cycles, setting 

f (x) = P (x) x, 

we study the equilibria of the equation 

X (t + 1) = f(Z) (x (t)), 

where 
f(2) (x) = P (P (x) x) P (x) x. 

This idea can be extended to p-cycles of any period. Applying the Lin­
earization Principle to equilibria of the composite equation and using a 
chain rule for Jacobians (see Exercise 3.45), we have the following Lin­
earization Principle for p-cycles. 

Theorem 3.29. The Linearization Principle for cycles. Assume xi E 

0 (for i = 0, 1, · · ·, p-1) is a p-cycle of the difference equation x (t + 1) = 
f(x(t)) with f E C1 (0 : 0) where O ~ Rm is an open set. Then the p­
cycle is locally asymptotically stable if p ( JfP) (x0 )) < 1 and is unstable if 

p ( Jf P\x1)) > 1, where 

JfP) (x0 ) = Jf (xp_ 1) Jf(xp_2 ) · · · Jf (x1) Jf(x0 ). 

To illustrate the application of this theorem, we return to the 
juvenile-adult model in Example 3.28. 
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Example 3.30. For the projection matrix (3.27) in Example 3.28, we 
found that the positive equilibrium destabilizes at R0 = R0, where R0 = 
exp (10/9) ,:::, 3 where a -1 bifurcation occurs. The bifurcation diagram 
in Figure 3.6 indicates that the result is a period-doubling bifurcation to 
2-cycles. Our goal in this example is to calculate analytically the 2-cycle 
and verify its stability, using Theorem 3.29, when R0 = 10. We seek a 
fixed point of the composite off (x) = P (x) x with the projection matrix 

[ 
0 15e-Cx1 +x2) ] 

P(x) = ~ ~ ; 
2 4 

that is to say, fixed point 

of the composite f\2l (x) for which x1 = f (x0 ) i- x0 . Matrix multiplica­
tions give 

[ x1 ] = [ ¥ exp(-}x(1 - ¼x2 - 15e-Cxi(+x~x2)) (2)x1 + x2 ) ] , 

Xz 16 2X1 + X2 + 12oe- X1 X2 X2 

which, by equating components, is equivalent to two algebraic equations 
for x1 and x2. These highly nonlinear equations are not solvable explic­
itly, so we turn to the help of a computer equation solver. There are three 
solutions (rounded to 3 decimals): 

[ 1.382 ] 
Xe,:::, 0.921 ' [ 3.652 ] and x0 ,:::, 0_553 . 

The first two are equilibria. The extinction equilibrium is unstable be­
cause R0 > 1, and the positive equilibrium is, according to the analysis 
in Example 3.28, also unstable because R0 > R0. The third is the first 
term of the 2-cycle 

~ [ 3.652 ] 
Xo ~ 0.553 [ 0.124 ] and x1 = f(x0 ) ,:::, 1.%4 . 
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To investigate the stability of this 2-cycle, we use the Jacobian (3.28) 
(with R0 = 10) to calculate the product 

,.(2) [ -0.444 -0.813 ] 
Jt' (xo) = Jf(x1) Jf (xo) ~ 0.063 0.113 

whose eigenvalues (to three decimals) are -0.003 and -0.328. Thus, 

p ( J(2\x0 )) = 0.328 < 1, 

and by Theorem 3.29, the 2-cycle is stable. □ 

3.5.3. Neimark-Sacker Bifurcations. The third and final basic bifur­
cation caused by the destabilizing of an equilibrium that we will con­
sider is the Neimark-Sacker bifurcation. This bifurcation is associated 
with the case when a complex eigenvalue leaves the unit circle in the 
complex plane at a complex number eie, 0 < e < n. We saw in the previ­
ous preliminary discussion (preceding the discussion of+ 1 bifurcations) 
that when this occurs in a linear matrix equation, the result is an invari­
ant loop in phase space and time series that are either periodic or com­
plex nonperiodic oscillations. The Neimark-Sacker theorem [62], [132] 
guarantees the creation of such an invariant loop when an equilibrium 
destabilizes in this way for nonlinear matrix equations as well. As with 
+ 1 and -1 bifurcations, there are technical conditions that are required 
for the implementation of this theorem and that are needed to determine 
the direction of bifurcation and whether or not the invariant loop is at­
tracting. (For example, the complex eigenvalues must not leave the unit 
circle at any of the first 4 roots of unity [i.e., eikB =j:. l fork= 1, 2, 3, 4].) 
We will not concern ourselves with these technicalities in this book, but 
instead we will simply associate this kind of bifurcation with invariant 
loops and more complicated oscillatory time series and utilize computer 
simulations for their study. Here is an example. 

Example 3.31. In the juvenile-adult model appearing in Example 3.28, 
adult fertility was negatively affected by increases in the total population 
size x1 + x2 • Consider a modification of that same model that assumes 
adult fertility is affected by only increased adult population density x2 

(and juvenile population density x1 plays no role). Figure 3.7 shows the 
bifurcation diagram of the matrix model with the resulting projection 
matrix 

P(x) = [ O 
S1 

3R -cx2 ] 2 oe 
S2 
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Figure 3.7. The bifurcation diagram for the juvenile-adult model in 
Example 3.31 shows a Neimark-Sacker bifurcation to an invariant 
loop at R0 = exp(7 /3) "" 10.31. The lower-left phase planes plot 
shows the invariant loop when Ro = 12. The time series of a sample 
solution on the loop is displayed in the lower-right plot. 

and the same parameters 

1 1 
c = 1, s1 = 2, and s2 = 4 
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used in Example 3.28. The bifurcation from the extinction equilibrium 
at R0 = l is forward-stable (the only density term in the projection ma­
trix is a decreasing function of x2). The bifurcation diagram in Figure 
3. 7 suggests that the destabilization of the bifurcating positive equilibria 
(at a value of R0 slightly larger than 10) results in a Neimark-Sacker bi­
furcation to an invariant loop, rather than a -1 bifurcation to 2-cycles as 
in Example 3.28. 

By solving the equilibrium equations 

and 
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we obtain the positive equilibrium 

~ lnR0 ] 

lnR0 

for R0 > 1. The Jacobian 

[ 
0 ~R0 (1-x2)e-x2 ] 

J= 21 2 1 
4 

evaluated at the positive equilibrium 

has eigenvalues 
1 1 r-----­

A1 = 8 + 8✓49 - 48lnR0 

~(l-lnR0)] 
2 1 

4 

1 1 r-----­
and J.2 = 8 - 8✓49- 48lnR0 • 

It is left as an exercise for the reader to show, using the Linearization 
Principle, that the equilibrium loses stability as R0 increases through 
exp(7/3) and that when R0 = exp(7/3) ~ 10.31, the eigenvalues are 
equal to e±ie, where e = arctan 3-/7. This analysis corroborates, to­
gether with the bifurcation shown in Figure 3.7, that a Neimark-Sacker 
bifurcation of an invariant loop occurs. □ 

3.5.4. Backward Bifurcations and Strong Allee Effects. In Chap­
ter 1, we saw that one consequence of a backward-unstable bifurcation 
in m = 1 dimensional population models is a strong Allee effect (see 
Theorem 1.20). That is to say, one consequence of a backward-unstable 
bifurcation is a scenario in which there exists two stable equilibria, one 
of which is the extinction equilibrium and the other of which is a pos­
itive (survival) equilibrium. In such a scenario, the long-term fate of 
the modeled population-its (deterministic) extinction or survival-is 
initial-condition dependent. The fact that strong Allee effects can result 
from backward bifurcations for models of dimension m ~ 2 is illustrated 
by the juvenile-adult model in Examples 3.26 and 3.27. Figure 3.4 shows 
sample solutions that display the initial-condition dependent survival 
that defines a strong Allee effect (cf. Definition 1.18). 

As pointed out in Definition 1.18, a strong Allee effect does not nec­
essarily involve a survival equilibrium but can involve a positive attrac­
tor of any type (e.g., a periodic cycle or a chaotic attractor). The next 
example illustrates this possibility. 
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Example 3.32. If we replace the negative density factor on adult fertility 
used in the juvenile-adult model in Examples 3.26 and 3.27 (namely, the 
discrete logistic factor 1/ (1 + cx2)) by the Ricker factor exp(-cx2), then 
we get a matrix model with projection matrix 

(3.29) p (x) = [ 0 
S1 

b se-CX2 l+axz ] 
m l+sax2 

S2 

in place of (3.22). It is left as Exercise 3.46 to show that the formula for 
R0 remains unchanged as 

S1 
Ro= bms-1-­

- S2 

and that an application of Theorem 3.17 leads to the same conclusions 
as in Example 3.26, namely that the bifurcation is 

• backward-unstable if ~ > -1 1 ; 
C -S 

• forward-stable if~ < - 1-. 
C 1-s 

With s = 0.02, c = 1, s1 = 0.9, and s2 = 0.02, Figure 3.8 shows the 
bifurcation diagrams for three values of the Allee coefficient a. In all 
three cases, there is a Neimark-Sacker bifurcation of the positive equi­
libria, leading to a cascade of complex attractors. For the smallest Allee 
coefficient a = 1, the bifurcation is forward-stable. Since a strong Allee 
effect does not occur, this is a weak Allee effect. For the two larger val­
ues of a = 5 and 15, a backward-unstable bifurcation occurs, resulting 
in a strong Allee effect for an interval of R0 < 1. From the middle plot in 
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Figure 3.8. The bifurcation diagrams for the model in Example 3.32 
for three values of the Allee coefficient a with coefficients s = 0.02, 
c = 1, s1 = 0.9, and s2 = 0.02 in the projection matrix (3.29). 
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Figure 3.8 when a = 5, we observe that the strong Allee effect involves 
only survival equilibria. On the other hand, for a = 15, we see from 
the rightmost plot that the survival attractor is not an equilibrium for 
0.59 ~ R0 < 1. □ 

3.6. Imprimitive Projection Matrices 

As seen in Section 3.5, the asymptotic dynamics associated with nonlin­
ear matrix equations 

x(t + 1) = P(x(t))x(t) 

can be quite different from one equation to another depending on the 
details of the nonlinearities appearing in the equations. However, one 
feature they all have in common (under quite general conditions) is the 
basic bifurcation of positive equilibria that occurs upon destabilization 
of the extinction equilibria, as given by the basic bifurcation result con­
tained in Theorem 3.21 and 3.13. This bifurcation result is offundamen­
tal biological significance as well, since it deals with the basic question 
of extinction versus survival of a population. 

Notice that part (b) ofTheorem 3.21 that concerns the stability of the 
bifurcating branch of positive equilibria requires the primitivity of the 
inherent projection matrix P (Om). As we will see, there are applications 
in which this is not true. This raises the question, In what way does 
the lack ofprimitivity affect the basic bifurcation when Om destabilizes? 
Theorem 3.21(a) guarantees that positive equilibria bifurcate from Om, 
that the direction of bifurcation is determined by K, and that backward 
bifurcating equilibria are unstable. However, it is no longer true in general 
that forward bifurcating equilibria are stable. 

We illustrate this assertion by means of an example that has a for­
ward bifurcation of unstable positive equilibria. The matrix model with 
projection matrix 

(3.30) 

is a special case of Ebenman's semelparous juvenile-adult model (3.3). 
The inherent projection matrix 

P (02) = [ ~ b~ ] 
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has eigenvalues ±-/Ro, where R0 = b2 /2 is the inherent reproduction 
number. The dominant eigenvalue r0 = -/Ro is not strictly dominant, 
since the other eigenvalue --/Ro has the same absolute value, which 
implies P (02) is not primitive. As R0 increases through 1, the extinc­
tion equilibrium destabilizes. Our goal is to show that, as a result of this 
destabilization, positive equilibria bifurcate from the extinction equilib­
rium for R0 i::; 1 (the bifurcation is forward) but that they are unstable. 

Equilibria are solutions of the equilibrium equation 

0 
1 1 

2 l+x1 

2R 1 
O 1+2x1 +x2 

0 

which is equivalent to the system of two algebraic equations 

1 
x 1 = 2Ro 1 2 x 2 and 

+ X1 + Xz 
1 1 

X2 = 2l+X1X1, 

Substituting x 2 from the second equation into the first equation, we ob­
tain the quadratic equation 

(1 - Ro)+ ;xl + 2Xt = 0 

for x1. This equation has a positive solution x1 > 0 if and only if R0 > 1 
that, by the quadratic formula, is 

1 
X1 = 8 (y32Ro+l7-7). 

From the second equilibrium equation, we get 

1 y'32R0 + 17 - 7 
X2 = - ---;::::====--, 

2 y'32R0 + 17 + 1 

and we conclude that there exists a positive (and only one positive) equi­
librium 

(3.31) [ x1 ] _ [ ½ ( y' 32Ro + 17 - 7) l 
X - 1 y32R0 +17-7 

2 2 ✓32R0 +17+1 

if and only if R0 > 1. This shows that a forward bifurcation of positive 
equilibria occurs at R0 = 1 in this example. Are these positive equilibria 
stable or unstable? 
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In principle, we can answer this question using the Linearization 
Principle by substituting the formula for the positive equilibria into the 
Jacobian 

(3.32) 

and by calculating the eigenvalues of the resulting matrix using the qua­
dratic formula formula on its characteristic equation. Given the com­
plexity of the formula (3.31) for the equilibria, to do this by hand is te­
dious and, even with the aid of a computer algebra program, leads to 
rather intractable formulas for the eigenvalues. However, treating them 
as functions of R0 , we can use a computer algebra program to calculate 
the first few terms in the Taylor expansion of the eigenvalues, centered 
atR0 =1: 

Ai (R0 ) = 1 - ~ (R0 - 1) + 0 ( (R0 - 1)2) and 

Az(R0 ) = -1- 1
1
4 (R0 -l) + o((R0 - 1)2). 

From these expansions, we see for R0 ~ 1 that 0 < Ai (R0 ) < 1 and 
A2 (R0 ) < -1. It follows, from the second inequality, that the positive 
equilibria are unstable for R0 ~ 1. 

This matrix model shows that a forward bifurcation of positive equi­
libria at R0 = 1 is not necessarily stable when the inherent projection ma­
trix is imprimitive. We can also gain some initial insight into matrix mod­
els with imprimitive inherent projection matrices by noting two facts 
about this example. 

First, as R0 increases through 1, both eigenvalues ±{Ro leave the 
unit circle in the complex plane simultaneously: one through + 1 and 
the other through -1. This suggests the bifurcation involves both equi­
libria and 2-cycles (see Section 3.5). Thus, in addition to the forward 
bifurcating positive equilibria, we suspect 2-cycles also play some kind 
of role in this example. 

The second fact is the observation that the imprimitive pro­
jection matrix (3.30) holds the boundary of Rt invariant. What this 
means is that x(0) E 8Rt implies x(t) E 8Rt for all t E Z+. (Note 
x E 8Rt means that Xi = 0, x2 = 0, or both.) To see this, consider an 
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initial condition 

x(0) = [ XiiO) ] E 8Ri 

where x2 (0) > 0. Then using the projection matrix (3.30), we calculate 

x(l) = [ 

x(2) = [ 

X1 (1) 
X2 (1) 

X1 (2) 
X2 (2) 

] = [ 

] = [ 

and we conclude by induction that such an initial condition generates a 
solution all of whose terms 

lie on the boundary 8Ri. Notice that this solution implies that the adult 
and juvenile classes never overlap (i.e., that the generations are alter­
nately synchronized so as to be temporally separated). For this reason, 
such a solution is called a synchronous solution. Similarly, it is easy 
to see that an initial condition x1 (0) = 0 where x2 (0) > 0 also produces 
a synchronous solution. 

These two facts lead us to suspect that synchronous 2-cycles play 
a role in the matrix model with projection matrix (3.30). Consider first 
the possible existence of synchronous 2-cycles. We look for a solution 
for which 

x(0) = [ XiiO) ] E 8Ri, X1 (0) > 0 

and x(0) = x(2). (Note that x(0) =f. x(l) is guaranteed by (3.33).) A 
calculation shows x(0) = x(2) occurs if and only if 

and we have a positive 2-cycle if and only if 

2 
X1 (0) = 3 (Ro - 1) > 0. 
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Thus, for R 0 > 1, there exists a (unique) synchronous 2-cycle consisting 
of the two vectors 

[ ~ (R0 - 1) ] (3.34) x 1 = 3 0 and 

on the boundary of Rt. 

We conclude that two bifurcations occur in this example as R0 in­
creases through 1: a forward bifurcation of positive equilibria and a for­
ward bifurcation of synchronous 2-cycles. 

We have already seen that the positive equilibria are unstable for 
R0 ~ 1. But what about the 2-cycles? We can answer this question by 
using the Linearization Principle for cycles in Theorem 3.29. We evalu­
ate the Jacobian (3.32) at the cycle points (3.34) and then calculate the 
product 

11<>) (x0) - Jf (x1) Jf (Xo) - [ ¾ 3 0 4Ro-l 
-~ (R _ l) 2R0 +1 l 

Ro · 
3 4Ro-l 

The eigenvalues of this triangular matrix appear along the diagonal: 

1 R0 
A1 = Ro and Az = 3 4Ro - 1 

Clearly, for R0 > 1, we have O < 1 1 < 1. A little algebra shows that 
0 < 12 < 1, and as a result, the 2-cycle is stable. 

In summary, in the m = 2 dimensional model with projection matrix 
(3.30), there occurs two simultaneously forward bifurcations at R0 = 1: 
one of unstable positive equilibria and another of stable synchronous 2-
cycles. 

This double bifurcation is not peculiar to this example but in fact 
always occurs in the m = 2 dimensional, imprimitive Leslie model with 
projection matrix (3.11) of the form 

(3.35) p (x) = [ 0 b2f3 (x) ] 
s1a(x) 0 

with b2 > 0, 0 < s1 < 1, and 

/3(02) = a(02) = 1. 

(The life cycle graph appears in Figure 3.9.) However, it is not always the 
case that the bifurcating 2-cycles are stable and the positive equilibria 
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Figure 3.9. The life cycle graph associated with the semelparous 
juvenile-adult model with projection matrix (3.35). 
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are unstable. Sometimes the reverse is true, although it never occurs 
that both are stable or both are unstable; see Theorem 3.33. 

Define the quantities 

Cw:= -at CJ - S18f2 /3, Cb•= -8f1 /3 - S18f2 0', 

K+ = Cw+ Cb, and 7(_ = Cw - Cb, 

(Recall that the superscript "0" denotes evaluation at Xe = 0 2 and R0 = 

b2S1 = 1.) 

Theorem 3.33. [29], [34] Assume CJ,/3 E C2 (R2 : R+) and that o :::; 
s1 CJ (x) ::; 1 for x E R+ in the semelparous juvenile-adult model with pro­
jection matrix (3.35). The extinction equilibrium is stable for R0 = b2s1 < 
1 and unstable for R0 > l. 

(a) IfK+ i- 0, then positive equilibria bifurcate from the extinction 
equilibrium Xe = 02 at R0 = 1. If K+ < 0, then the bifurcation 
is backward and unstable. If K+ > 0, then the bifurcation is 
forward, and it is stable if K_ > 0 and unstable ifK_ < 0. 

(b) If Cw i- 0, then synchronous 2-cycles bifttrcate from the extinction 
equilibrium Xe = 02 at R0 = 1. If Cw < 0, then the bifurcation 
is backward and unstable. If Cw > 0, then the bifurcation is for­
ward, and it is stable if K_ < 0 and unstable ifK_ > 0. 

Notice the following features of the bifurcation at R0 = 1 in The­
orem 3.33. First, backward bifurcations are unstable for both positive 
equilibria and synchronous 2-cycles. Second, the direction of bifurca­
tion of the equilibria and that of the 2-cycles occur independently (i.e., 
one can be forward and one backward, both backward, or both forward). 
Third, when both bifurcations are forward, then either the positive equi­
libria are stable and the synchronous 2-cycles are unstable or vice versa 
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(never are both stable or both unstable), a situation we refer to as a dy­
namic dichotomy. Which of the two bifurcating entities in this di­
chotomy is stable is determined by the sign of K_. This is illustrated in 
the following example. 

Example 3.34. From the projection matrix for the Ebenman's semel­
parous juvenile-adult model (3.3) 

(3.36) 

we have 

with b2 > 0, 0 < s1 ::; 1, and 

ciJ 2::. 0 and not all equal to 0, 

and 

from which we obtain 

16 

12 

Cw = c11 + s1 c221 cb = c21 + s1 c12, and 

K+ = C11 + S1C22 + C21 + S1C12. 

x. 
0-0-0-0-0-0-0-0 

0 5 10 15 20 192 194 196 198 200 
time 

0 5 10 15 20 192 194 196 19S 200 
time 

Figure 3.10. Two sample solutions of the semelparous juvenile­
adult model with projection matrix (3.36), with initial conditions 
x1 (0) = x21 (0) = 10 and parameters b2 = 3 and s1 = 0.5 (R0 = 1.5), 
illustrate the dynamic dichotomy in Example 3.34 when the bifurca­
tion at R0 = 1 of both positive equilibria and synchronous 2-cycles 
are foiward. (A) en = c22 = 0.5 and c12 = c21 = 0.2 imply that 
K_ = 0.45 > 0 and that the positive equilibrium is stable. (B) 
cu = c22 = 0.2 and c 12 = c 21 = 0.5 imply that K_ = -0.45 < 0 
and that the synchronous 2-cycle is stable. 
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Since both K+ and Cw are positive, Theorem 3.33 implies both positive 
equilibria and synchronous 2-cycles forward bifurcate at R0 = b2s1 = 1. 
Which is stable and which is unstable is determined by the sign of 

If K > 0, then the bifurcating positive equilibria are stable and the 
synchronous 2-cycles are unstable. This situation can be interpreted as 
occurring when the competition within the adult and juvenile classes 
(among themselves), as measured by Cw = c11 + s1 c2z, is stronger than 
the competition between juveniles and adults, as measured by cb = c21 + 
s1 c12 . In this case, the stable positive equilibria implies that ultimately 
both juveniles and adults will be present at any given time. 

On the other hand, if the competition between the two classes is 
stronger than the competition within the classes (K_ < O), then the syn­
chronous 2-cycles are stable, which means that in the long run, juveniles 
and adults will never occur at the same time and the generations will be 
temporally separated. See Figure 3.10 for an example of both cases. 

Note that by Theorem 3.20, the extinction equilibrium is globally 
asymptotically stable when R0 < 1. □ 

Theorem 3.33 and Example 3.34 concern an imprimitive Leslie 
model of the lowest dimension m = 2. Nonetheless, it serves to illustrate 
some of the complications that arise in the imprimitive case. The dy­
namic complications that can arise increase significantly with increased 
dimension m, and a thorough understanding of the possibilities is lack­
ing for dimensions m > 3, except for a few specialized types of projection 
matrices. 

For example, imprimitive Leslie models (of which the semelparous 
juvenile-adult is the lowest-dimensional case) have been studied by sev­
eral authors [11], [34], [42], [47], [48], [56], [58], [59], motivated pri­
marily by studies of semelparous species, such as the famous periodical 
cicadas (see Section 3. 7.3). Nonetheless, a complete understanding of 
the dynamics has not been attained even for this special case. 

One basic fact that is known is that, in addition to the bifurcation 
at R0 = 1 of positive equilibria, there occurs a bifurcation of synchro­
nous m-cycles in which exactly one age class is present at all times; these 
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so-called year-class cycles have the form 

(3.37) 

X1 (0) 
0 
0 

0 

0 

* 
0 

0 

0 
0 

* 

0 

0 
0 
0 

* 

* 
0 
0 

0 

(the asterisks represent positive numbers). However, other synchronous 
cycles that contain at all times exactly two (or three or more) age classes 
can also arise by bifurcation at R0 = 1. To determine which of these 
many synchronous cycles occur and are stable is a difficult analytic task. 
In fact, it can turn out that all the bifurcating synchronous cycles and 
positive equilibria are unstable and that the bifurcating attractor is a 
more complicated entity. An example appears in Section 3.7.3. 

For a special class of imprimitive projection matrices for which a 
general bifurcation theorem and dynamic dichotomy result has been rig­
orously established, see [127]. 

3.7. Applications 

The following applications were chosen not only because they have been 
used in ecological studies of specific biological species but because they 
illustrate the mathematical features centered around the basic bifurca­
tion at R0 = 1 that we studied in this chapter. 

The first two applications have primitive inherent projection ma­
trices: the first featuring a forward-stable bifurcation (with secondary 
bifurcations) and the second a backward-unstable bifurcation with an 
associated strong Allee effect. The third application has an imprimitive 
inherent projection matrix and features a dynamic dichotomy between 
positive equilibria and synchronous cycles. 

3.7.1. Flour Beetles. The LPA model in Example 2.13 is a general 
model for an insect with a larva-pupa-adult life cycle. A nonlinear 
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version of this model, with projection matrix 

(3.38) 

with b3 > 0, 0 < si :S: 1, and 

j3 (03) = crJ03) = 1, 

(see the life cycle graph in Figure 3.11) has been extensively used in ex­
perimental studies of flour beetle species (Tribolium sp.) [25], [114]. In 
those studies, the density factors account for cannibalism between life 
cycle stages, specifically cannibalism of eggs and pupae by larvae and 
adults. They take the form of Ricker-type exponential factors according 
to the following derivation [41]. 

Suppose the probability that an individual encounters a cannibal 
during a short interval of time from t to t + Mis approximately propor­
tional to the elapsed time fit ~ 0 (i.e., equals cfit for a constant c > O). 
The probability the individual escapes cannibalism by that cannibal is 
1- cM. If there are x cannibals and encounters with them are indepen­
dent, then the probability the individual escapes cannibalism is approx­
imately (1- cMt. Consider the interval from t to t + 1 in the matrix 
model (the unit of time is two weeks for Tribolium studies). Ifwe divide 
this interval into q subintervals of length fit = 1/ q, where q is a large 

Figure 3.11. The life cycle graph associated with the nonlinear LPA 
model with projection matrix (3.38). 
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positive integer, and if the encounters on each subinterval are indepen­
dent events, then the probability of an individual escaping cannibalism 

from time t tot+ lis approximately ( (1 - cl1ttr We get the probability 
an individual escapes cannibalism from x cannibals during the interval 
t to t + 1 by letting q - oo : 

J~~ ( ( l - ci ff = J~~ ( ( l - cir f 
= J~~ ( ( 1 - q~c r/crx 
= l~ ( ( 1 - ¾ff x 

= (l~ ( 1 - ¾ff x 

= (e-ltx' 
where n = q/c. Thus, the probability an individual escapes cannibalism 
(i.e., the per capita cannibalism survival rate) from x cannibals is e-cx. 
This leads to the projection matrix 

[ 
0 0 b3 exp(-c 1x1 - c2x3 ) l 

(3.39) P(x) = 1 -
0

µ 1 O O , 

(1 - µ 2 ) exp (-c3x3 ) 1 - µ 3 

where the coefficients c1 and c2 measure the loss of eggs due to canni­
balism by larvae and adults, respectively, and c3 measures the loss of 
pupae due to cannibalism by adults. Here, we have replaced the inher­
ent survival probabilities si by 1 - µi, where µi is the probability of not 
surviving a unit of time (mortality rate), in order to align our notation 
with that commonly used for this model. 

The inherent projection matrix 

P(O,) = [ I ~µ1 

0 
0 

is primitive with inherent net reproduction number 

1 
Ro = b3 (1 - µ1) (1 - µ2) -

µ3 
(see equations (2.29) and (2.30)). 
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Figure 3.12. This map shows the bifurcation locations and type us­
ing b3 and µ 3 as parameters (with the remaining parameters given 
by (3.40)). The vertical dashed lines correspond to the bifurcation 
diagrams in Figures 3.13 and 3.14. The vertical dashed line atµ = 
0.ll08 corresponds to the expermental data reported in [50], and the 
solid black circle is the b3 estimated for that experiment. The model 
therefore predicts a 2-cycle oscillation, which in fact was observed 
(see Figure 3.13). The other vertical dashed line located atµ = 0.96 
corresponds to the bifurcation diagram in Figure 3.14. 
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By Theorem 3.20, the extinction equilibrium is globally asymptot­
ically stable for R0 < 1. The extinction equilibrium destabilizes as R0 

increases through 1, and since all density factors have negative deriva­
tives at Xe = 0 3, the bifurcation of positive equilibria is forward and 
stable (see Corollary 3.23). 

Thus, the nonlinear LPA model with projection matrix 
(3.39) predicts a forward bifurcation of positive equi­
librium that are stable at least for R0 ~ 1. 

Lacking formulas for the positive equilibria, it is difficult to ascertain 
analytically whether secondary bifurcations occur for larger values 
of R0 . 
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Numerical simulations suggest that both -1 (period 
doubling) and Neimark-Sacker (invariant loop) bifur­
cations are possible, depending on the values of the 
model's parameters, as R0 is increased. 

Using data obtained from their (replicated and controlled) experiments 
with Tribolium castaneum Herbst, the authors in [50] obtained (maxi­
mum likelihood) estimates 

(3.40) 
b3 = 11.6772, µl = 0.5129, µ2 = 0, µ3 = 0.1108, 

c1 = 0.0093, c2 = 0.0110, and c3 = 0.0178 

for the parameters, and they located bifurcation points when using ei­
ther b3 or µ 3 as a bifurcation parameter as shown in Figure 3.12. Two 
sample bifurcation diagrams, obtained by varying b3 along the two ver­
tical dashed lines in Figure 3.12, are displayed in Figures 3.13 and 3.14. 

The bifurcation diagram in Figure 3.13 corresponds to µ 3 = 0.1108 
and shows a forward-stable bifurcation of positive equilibria (at b3 = 
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Figure 3.13. The upper plot is the bifurcation diagram associated 
with the LPA model (3.39) using b3 as the bifurcation parameter. The 
remaining parameter values are given in (3.40). The lower plot shows 
the time series of larval data (solid circles) taken from one replicate 
of the experiment reported in [50] in which b3 = 11.6772. The open 
circles are the one step model predictions from each data point. 
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Figure 3.14. The bifurcation diagram associated with the vertical 
dashed line in Figure 3.12 located at µ 3 = 0.96 shows a forward­
stable bifurcation of positive equilibria at b3 = 1. 9708 followed 
(rather soon) by a Neimark-Sacker bifurcation of invariant loops. 
Further increases in b3 result in a cascade of complicated bifurca­
tions and chaos. 
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0.2275 where R0 = 1) followed by a period-doubling bifurcation to sta­
ble 2-cycles. Also shown is a plot of the larval time series data from one 
of the replicated experiments reported in [50], which clearly displays a 2-
cycle oscillation as predicted by the bifurcation diagram at b3 = 11.6772. 
Dashed lines connect the data points (solid circles) to the model­
predicted larval population size based on that data point (open circles), 
which gives a sense of how accurate the model predictions are. A thor­
ough statistical analysis of the prediction accuracy is given in [SO]. 

The bifurcation diagram in Figure 3.14 corresponds to the vertical 
dashed line at µ 3 = 0.96 on the map in Figure 3.12. As indicated on the 
map, this diagram shows a forward-stable bifurcation of positive equilib­
ria followed by a Neimark-Sacker (invariant loop) bifurcation. This dia­
gram also indicates that other complicated attractors are present as b3 is 
increased (including cycles and "chaotic" attractors), which was the mo­
tivation for over a decade of carefully designed and implemented exper­
iments (replicated and controlled) to demonstrate that Tribolium pop­
ulations would indeed behave in the laboratory in the model-predicted 
ways [23], [52], [87], [41], [54]. 

This successful project of matching models to data shows how ma­
trix models can accurately and quantitatively predict (not just fit) the dy­
namics of a biological population. In addition to serving as the first un­
equivocal demonstration of chaotic dynamics in a biological population 
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(albeit in a laboratory setting), this project successfully demonstrated, by 
means of replicated and controlled experiments, the existence of many 
other dynamic phenomena (some unexpectedly) predicted by the model 
[24], [40], [41], [51], [53], [74], [75], [76], [77], [78]. 

3. 7 .2. Cannibalism and Climate Change. Cannibalism has been 
documented to occur in a wide diversity of animals, across many taxa, 
including vertebrates, invertebrates, and protozoans [65], [115]. There 
can be many causes of cannibalism, such as overcrowding and stress, 
but poor food quality and lack of adequate food constitute the most im­
portant reasons for its occurrence [61]. Changes in climate can cause 
food resource availability to decrease for individuals in a species, who 
then resort to cannibalism as a way to cope. For example, cannibalism 
in some marine birds, lobsters, and polar bears has recently been corre­
lated to increased ocean temperatures that have affected their primary 
food sources. In this section, we look at a model inspired by one stud­
ied in [ 43] and consider circumstances under which a population that 
would go extinct because of reduced food resource availability but can 
survive if it engages in cannibalism. 

While cannibalism occurs in many forms, a common form is the 
cannibalization of juveniles by adults. For example, the model in [ 43] 
was motivated by rigorously documented cannibalism of eggs by adults 
in colonies of glaucous-winged gulls (Larus glaucescens) that is corre­
lated with the loss of marine food resources with increasing mean sea 
temperatures (particularly during El Nifio years) [72]. The model is an 
m = 2 dimension matrix model with 

where x1 and x2 are juvenile and adult densities, respectively, and with 
a projection matrix of the form (3.19) 

(3.41) 

with b > 0, 0 < s1,s2 < 1, and 

/3 (02) = 0"1 (02) = 0"2 (02) = 1. 
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The parameters b, s1 , and s2 are the inherent adult fertility rate,juvenile 
survival probability, and adult survival probability, respectively. The in­
herent projection matrix 

P (02) = [ 0 b ] 
S1 Sz 

is nonnegative and primitive, and the reproduction number is 

1 
Ro= bsi-1--· 

-Sz 

(See (3.20) and Example 3.15.) Theorem 3.17 implies that the extinc­
tion equilibrium loses stability as R0 increases through 1 and that the 
resulting bifurcation of positive equilibria is forward-stable if K > 0 and 
backward-unstable if K < 0, where K is given by formula (3.21), namely 

K = S1 (1 - s2i (-o~l/3) + Si (1 - S2) (-0~2/3) 
(3.42) + (1 - S2)2 (-o?axJ + S1 (1 - Sz) (-o?axJ 

+s1 (1- Sz) (-o?axJ + Si (-o? ax2). 
In this application, we are interested in the latter case and its potential 
for a strong Allee effect. If this can occur because of positive effects on 
some survival rates due to cannibalism, then the population can survive 
if R0 < 1 when it would go extinct in the absence of cannibalism. 

The trade-offs on which we will focus are: a negative correlation be­
tween cannibalistic activity and environmental resource foraging (if one 
goes up the other goes down); and the negative effect on juvenile survival 
of cannibalism versus the positive effect the cannibalistic resource has 
on adult survival (when environmental resource availability decreases). 

The model derivation entails specifying submodels for the nonlinear 
density factors ai (x) and J3 (x), which describe the effects and trade-offs 
present when adults x2 cannibalize juveniles x1. We deal with each of 
the three density terms in turn. While we wish to focus on as small a 
number of mechanisms as possible in this low-dimensional model, cap­
turing the key relevant ones will still result in a somewhat complicated 
projection matrix P (x). 

The Juvenile Survival Density Factor cr1. Let p denote the probability an 
individual juvenile is cannibalized in the presence of x2 adults. We as­
sume p depends on the amount of environmental resource available, 
which we denote by p > 0, as well as the number of juveniles and adults 
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present. Therefore, we write p = p (p, x). To apply our analysis in this 
chapter (specifically, for Assumption 3.3 to hold), this mathematical ex­
pression needs to be twice continuously differentiable in x1 and x2 and 
have a range in the interval 0 ::; p (p, x) < 1. Furthermore, p (p, x) 
should be increasing in x2 and decreasing in p and x1. The reason for the 
first condition is obvious: as the number of adult cannibals increases, the 
probability of being cannibalized increases. The reason p (p, x) should 
be decreasing in p is because we assume that cannibalism activity in­
creases when environmental availability decreases. Finally, that p (p, x) 
should be decreasing in x1 is a familiar assumption in ecology called the 
predator saturation effect ( or in this case, the cannibal saturation effect), 
which states that an individual's probability of being a victim goes down 
in the presence of a higher number of potential victims. Then 

a1 (x) = 1 - p (p, x) 

in the projection matrix (3.41). 

An example mathematical expression that satisfies these assump­
tions, based on the use of rational functions, is 

(3.43) 

where c1 ~ 0 measures the strength of the cannibalism saturation ef­
fect and v ~ 0, which we call the cannibalism coefficient, measures the 
aggressiveness of an individual adult cannibal. 

The Adult Survival Density Factor a2. In our model, we assume that the 
benefit an adult receives from cannibalistic resources is increased sur­
vival probability. Therefore, we take an adult's survival a2 to be an in­
creasing function a2 = a2 (w) of the total number of juvenile cannibal­
ized by the adult, which we denote by w. The function a2 (w) must be 
designed so that not only a2 (0) = 1 but s3a2 (w) ::; 1 for all w ~ 0. As an 
example, we use 

1 + c3 w 
(3.44) a (w) - --- c3 > 0, s2 < a < 1. 

2 - 1 + ClC3W' 

The total number of juveniles cannibalized by all adults x2 is p (p, x) x1 ; 

hence, the amount taken by an individual adult is 

p(p,x) 
W= ---Xi, 

X2 
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which with (3.43) is 

(3.45) 

The Adult Fertility Density Factor f3. We assume the only effect of density 
is the usual negative effect of adult density, as for example with 

1 
(3.46) J3 (x) = 1 + CzXz, c > 0. 

The Inherent (Density-Free) Parameters. We assume the per-adult inher­
ent fertility rate bis proportional to the environmental resource avail­
ability p with a constant of proportionality that is a decreasing function 
of cannibalistic activity. That is to say, there is a trade-off between envi­
ronmental resource gathering and cannibalistic activity. As an example, 

1 
b = bo-1-P· +v 

Finally, we take inherent juvenile and adult survival probabilities s1 and 
s2 to be independent of p and v. 

Using the example submodels (3.43), (3.45), (3.44), and (3.46), we 
obtain the projection matrix 

[ 
0 

P(x) = 
S1 (1- p(p,x)) 

1 l b0 -1 -pf3 (x) 
+v 

SzO'z (w (p,x)) 

and the reproduction number 

1 S1 
Ro(P) = bo-1-p-1 -. + V -S2 

From this formula, we can put R 0 (p) explicitly into P (x) and obtain 

(3.47) [ 
1 - S2 l p (x) = 0 R0 (p) -s1-/3 (x) . 

S1 (1 - p (p, x)) SzO'z (w (p, x)) 

Despite the complexity of this model, we know (as pointed out previ­
ously) from Theorem 3.17 that the extinction equilibrium loses stability 
as R0 (p) increases through 1 and that whether the resulting bifurcation 
of positive equilibria is forward and stable or backward and unstable is 
determined by the sign of K. Since not all partial derivatives of the en­
tries in P (x) have the same sign (when evaluated at the bifurcation point 
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Figure 3.15. Shown are bifurcation diagrams and sample time se­
ries solutions for the matrix model with projection matrix ( 3.47) with 
coefficients s1 = 0.5, s2 = 0.9, c 1 = c 2 = 0.01, c3 = 100, p = l, 
and a = 0.95. (A) and (B), respectively, show the bifurcation di­
agrams with cannibalism present (v = 0.01) and absent (v = 0). 
When cannibalism is present, the bifurcation is backward-unstable 
(K(l) = -4.74 x 10-1 < O); when it is absent, the bifurcation is 
forward-stable (K (1) = 2.50 x 10-4 > 0). (C) and (D) show time se­
ries of two sample orbits when Ro= 0.923 < 1 with initial conditions 
x(O) = col(O, 5) and col(O, 6). In (C), cannibalism is present, and the 
first solution goes extinct while the second does not, indicating the 
occurrence of a strong Allee effect and initial-condition dependent 
survival. In (D), on the other hand, cannibalism is absent, and both 
solutions go extinct. 

R0 (p) = 1 and Xe = 02 ), we cannot use Corollary 3.23 and must resort 
to the calculation of K (p) by the formula in (3.42). 

After some calculus, followed by some algebraic manipulations, we 
find that 

and the sign of K (p) is the same as the sign of the bracketed expression. 
We conclude the following: 
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(3.48) 

The bifurcation at R0 (p) = 1 in the cannibalism model 
with projection matrix (3.47) is 

(a) forward and stable if (1 - a) c3 < 1 + 1:P s1 c2; 

(b) backward and unstable if (1 - a) c3 > 1 + 1:P s1c2. 

To interpret this result, we note that 

(1- a)c3 = da2 (w) j 
dw w=O 
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measures how quickly the adult survival rate increases due to (a low 
level) of juvenile cannibalization. Thus, if cannibalism is sufficiently 
beneficial in this sense (i.e., if (1 - a) c3 is large enough so that the in­
equality in (3.48)(b) is met), then the bifurcation is backward-unstable. 

This result, based on the general bifurcation results in Section 3.4, 
accounts only for the dynamics of the model near the bifurcation point 
R0 = 1. However, as pointed out in Section 3.5.4, a backward bifurca­
tion in population models is usually associated with a strong Allee effect, 
and while we will not attempt to prove this rigorously, we can show by 
numerical simulations that this does occur in this model. 

Figure 3.15 shows sample bifurcation diagrams when cannibalism 
is present and absent. In graph (A), cannibalism is present (u > 0), 
and the bifurcation is backward-unstable (K(p) < 0); in (B), cannibal­
ism is absent (u = 0), and the bifurcation is forward-stable (K (p) > 0). 
This cannibalism-induced backward bifurcation creates a strong Allee 
effect and initial-condition dependent survival when R0 (p) ~ 1, as il­
lustrated in graph (C) showing two sample solution time series when 
R0 (p) = 0.923, one of which survives and the other of which goes ex­
tinct. When cannibalism is absent, however, the same initial conditions 
lead to solutions that both go extinct when R0 (p) = 0.923. 

The cannibalism model with projection matrix (3.47) 
predicts that a cannibalistic population can survive 
when environmental resources drop so low that 
R0 (p) < 1 and a noncannibalistic population would 
go extinct. 

This survival capability in a deteriorated environment comes, however, 
with two important caveats: 
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• The population density cannot initially be (or at 
some point in time drop) so low that it is in the basin 
of attraction of the extinction equilibria. 

• Environmental resource availability must not 
decrease so low that R0 (p) falls below the tipping 
point in the bifurcation diagram (approximately 
0.92 in Figure 3.15), because then the population 
would experience a sudden collapse to extinction. 

3.7.3. Periodical Insects. Periodical insects have a life cycle that en­
tails development over a fixed number of years followed by a short repro­
ductive stage in which all adults appear synchronously after which indi­
viduals die. The result is that the population consists of isolated yearly 
classes (cohorts) that do not overlap. Examples include many species of 
beetles, flies, wasps, moths, and butterflies whose life cycles range from 
1 to 5 years [73]. The most famous examples, however, are the period­
ical cicadas whose life cycles are 13 years for some species (Magicicada 
tredecim, M. tredecassini, and M. tredecula) and 17 years for others (M. 
septendecim, M. cassini, and M. septendecula ).6 

In a seminal study of periodic insect dynamics, Bulmer [11] utilizes 
a nonlinear semelparous Leslie model with projection matrix 

0 0 
S1 CJ1 (x) 0 

(3.49) P (x) = 0 S2 CJ2 (x) 

0 0 

0 
0 
0 

with bm > 1, 0 < si < 1, and 

f3 (Om) = CJi (Om) = 1 

0 

and a time unit of one year. In this age-structured model, individuals 
are juveniles for m - 1 years and emerge in the mth year as reproducing 
adults. Because of the O in the lower-right comer, adults do not survive 
an additional breeding year; hence, the population is semelparous. The 

6There are, however, thousands of other cicada species that are not periodical. 
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inherent projection matrix 

0 0 0 bm 
S1 0 0 0 

(3.50) P(Om) = 0 S2 0 0 

0 0 Sm-1 0 

is imprimitive (Example 2.13). To see this, we note that its m eigenvalues 

(3.51) 

are the mth roots of the inherent net reproduction number 

where ui = exp(2ni/m), i = 1, 2, ... , m, are the mth roots of unity. (See 
Exercise 3.47.) Thus, the dominant eigenvalue r0 = .il1 = 'VRo is not 
strictly dominant (since all eigenvalues have the same absolute value). 

By Theorem 3.20, the extinction equilibrium is globally asymptoti­
cally stable for R0 < 1. 

From the results described in Section 3.6, we know that upon desta­
bilization of the extinction equilibrium, when R0 increases through 1, 

there come into existence both positive equilibria and synchronous cy­
cles. In a population at a positive equilibrium, individuals from all age 
classes are present at all times, whereas in a population in single-class 
synchronous cycle (3.37), the age classes are synchronized so as to never 
overlap and interact. It is the latter situation, in which adults emerge 
only once every m years, that is the mathematical representation of the 
periodical insect life cycle. So, in a modeling study of periodic insects, 
a main goal is to determine the circumstances under which there exist 
stable single-year synchronous cycles (3.37). 

The main conclusion in Bulmer's study [11] is that strong compe­
tition among the different age classes is the main mechanism that pro­
motes synchronous cycles and a periodical life cycle. Following Bulmer, 
we model interclass and intraclass competition by using Ricker-type ex­
ponential factors 

j3 (x) = exp (- £ CmjXj) 
J=l 
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in the projection matrix (3.49). The coefficients cu > 0 measure the in­
tensity of competition among individuals in the ith age class (intraclass 
competition), while ciJ ~ 0 for i =I- j measure the effect of competition 
on the survival ofan i-class individual from individuals in the j-class (in­
terclass competition). For insects whose maturation takes m = 2 years 
(such as most species of periodical moths [73]), Theorem 3.33 provides 
criteria for stable synchronous 2-cycles. It is left as Exercise 3.47 to show 
that the formulas for the diagnostic quantities in Theorem 3.33 are the 
same as in Example 3.34: 

Cw= Cu+ S1C22 > 0, Cb= C21 + S1C12 ~ 0, 

K+ =cu+ s 1c 22 + c 21 + s 1c 12 > 0, and 

1(_ =C11 +s1C2z-(C21 +s1C12)-

This establishes the same conclusions for this semelparous Leslie model 
with m = 2 obtained in Example 3.34: 

There is a dynamic dichotomy between the forward bi­
furcating positive equilibria and synchronous 2-cycles 
as R0 increases through 1. The synchronous 2-cycles 
are stable (and the positive equilibria unstable) if K_ < 
0, which means between age class competition is more 
significant than within age class competition. It fol­
lows that sufficiently intense interclass competition will 
produce periodical life cycle dynamics. 

This is the same conclusion reached by Bulmer [11] in his study of this 
m = 2 dimensional case. 

While the m = 2 dimensional semelparous Leslie model is appro­
priate for the many species of periodical insects (including many moths 
and butterflies as listed in [73]) that synchronously emerge every 2 years, 
there are periodical insects whose emergence period is longer. Examples 
include May beetles (Melolontha sp.), whose periods range from 3 to 6 
years, and the famous periodical cicadas (Magicicada sp.) with emer­
gence periods of 13 and 17 years. While it is known that positive equi­
libria and single-year, synchronous m-cycles bifurcate at R0 = 1 for a 
nonlinear matrix model with a projection matrix (3.49) of any dimen­
sions m ~ 2, a dynamic dichotomy between them does not necessarily 
hold when m ~ 3 as it does when m = 2 [ 42]. Other types of attractors 
can also arise by bifurcation at R0 = 1 when m ~ 3. To illustrate this, we 
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Figure 3.16. The parameter map that determines the nature of the 
bifurcation at R0 = 1 for the m = 3 dimension semelparous Leslie 
model with projection matrix (3.49). Region A1: p 1 + p2 < 2. Region 
A2: Pl > 1 and P2 > 1. Region A3: Pl+ P2 < 2 and either Pl < 1 or 
P2 < 1 (but not both). 
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take a brief look at the case m = 3, for which the bifurcation at R0 = 1 
is fairly well understood [ 30]. 

Consider the projection matrix(3.49)with m = 3 and density factors 

(3.52) 

/3 (x) = exp(- Z:~=l c31 x1) and ai (x) = exp(- Z:~=l ci1x1) 

for i = 1 and 2, 

where the coefficients cij :::: 0 measure competitive intensity. It is shown 
in [30] that the bifurcation of positive equilibria and the bifurcation of 
single-year, synchronous 3-cycles are both forward and that their the sta­
bility properties (at least for R0 ~ 1) are determined by the two ratios 

C21 + S1 C32 + S1 SzC13 d C31 + S1 C12 + S1 S2C23 P1 := ------- an P2 := -------. 
Cu+ S1C22 + S1S2C33 Cu+ S1C22 + S1S2C33 

The denominator is a measure of intraclass competition in the popula­
tion, since it involves only the competition coefficients cu (at least one 
of which we assume is positive). The numerators are measures of inter­
class competition in the population. The numerators in p 1 (respectively 
p2 ) involve coefficients that measure competition effects that each age 
class has on the age class one year older (respectively younger). 

We locate which region Ai in the positive quadrant of the (p1,p2)­

plane, as shown in Figure 3.16, the point (p1, p2 ) lies. The bifurcating 
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Figure 3.17. Graphs obtained from them = 3 dimensional semel­
parous Leslie model with projection matrix (3.49) and density fac­
tors (3.52) [30]. Inherent parameter values are b2 = 4, s1 = 0.5, 
and s2 = 0.75; hence, R0 = 1.5. The competition coefficients 

are given in the matrix [c;1] = [ ~:~~ O.~l ~ ]· The point 
0.01 0.02 0.01 

(p1 , p2) = (2.133, 0.5333) lies in regionA3 in Figure 3.16. The upper­
left graph shows the bifurcating invariant loop containing the single­
year, syncrhonous 3-cycle shown by open circles. The upper-right 
graph shows the orbit of a typical solution (with initial conditions 
(x1 (0), x20, x3 (0)) = (1, l, 1)). Note that it spirals outward and ap­
proaches the invariant loop. The middle graph shows the time se­
ries of the adult component x3 (t) of this solution. The bottom-left 
graph shows a sample close-up of the synchronous 3-cycle oscilla­
tion of x3 (t) that occurs during the recurring episodes. The bottom­
right graph shows a close-up of a typical transition phase between 
3-cycle episodes, which results in a phase shift of the oscillation. Re­
produced from Fig. 5 in [30] with permission. 
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positive equilibria are stable if (p1 , p2 ) E A1 and are unstable if (p1 , p2 ) E 

A2 u A3 . The bifurcating single-year, synchronous 3-cycles are unstable 
if (p1, p2 ) E A1 u A3 and are stable if (p1, p2 ) E A2 . 

Thus, ifwe restrict (p1, pz) to lie in A1 u A2, the dynamic dichotomy 
between the equilibria and the synchronous 3-cycles holds. We inter­
pret (p1, p2 ) E A1 as weak interclass competition since neither p1 nor p2 

can be large, and we interpret (p 1 ,p2 ) outside of A1 as strong interclass 
competition. With this interpretation, we conclude once again, provided 
(p1 , p2 ) ~ A3 , that strong interclass competition results in a periodical 
life cycle. 

But what about (p 1 ,p2 ) E A3? In this case, both the positive equi­
libria and synchronous 3-cycles are unstable. It is shown in [30] that an 
invariant loop of the form shown in the upper-left graph of Figure 3.17 
also forward bifurcates at R0 = 1. This triangular shaped loop lies en­
tirely on the boundary a Rt of the positive octant Rt (which means that 
at all of its points, there is at least one missing age class). The bifurcating 
synchronous 3-cycle is in the loop, as shown by the open circles in Fig­
ure 3.16. The connecting sides of the loop are invariant (that is to say, 
if an initial point lies on a side, then the solution remains on the loop 
for all time). Furthermore, for (p1 , p2 ) E A3 , the loop is the attractor of 
solutions in Rt. To see how solutions approaching this loop behave, the 
time series plots of the adult class x3 of a sample solution is also shown 
in Figure 3.17. 

Note that the adult class shows recurring episodes of emergence 
with period 3 of increasing duration. These episodes are separated by 
a transition phase that, it turns out, shifts the 3-cycle pattern to a new 
phase. (Since the solution recurrently visits the three phases of the 3-
cycle, the loop is called a cycle chain.) So, although solutions do not 
approach the single-year, synchronous 3-cycle, they nonetheless show a 
synchronous, 3-cycle emergence pattern over longer and longer lasting 
episodes as time goes on. In this sense, the model predicts a periodical 
life cycle of period 3 in region A3 as well as in region A2 . In summary, 

For the m = 3 dimensional semelparous Leslie model 
with density factors (3.52), the bifurcation at R0 = I 
produces a dynamic dichotomy between positive equi­
libria (with overlapping generations) versus synchro­
nized 3-cycles of nonoverlapping generations, with the 
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latter dynamic occurring if interclass competition in­
tensity is sufficiently high. 

Other casual mechanisms for a periodical life cycle have also been 
investigated using semelparous Leslie models. For example, the role of 
predation on the emerging adults can be a contributing factor. See Ex­
ercise 3.49. 

The existence of bifurcating cycle chains in this model serves to 
illustrate the complexity of the dynamics that can occur in higher­
dimensional models with imprimitive projection matrices. In fact, there 
are other dynamic patterns possible in this m = 3 dimensional model 
that we will not look at here. See [30], [42], [47], [48], [56], [59], [58], 
[89], [90], [91], [93], [127], [128] for more studies and applications of 
models with imprimitive inherent projection matrices. 

3.8. Concluding Remarks 

In this chapter, the matrix modeling methodology for the dynamics of 
a structured population developed in Chapter 2 is extended to include 
density effects (i.e., to include the effects that population densities can 
have on class-specific vital rates). This makes the entries in the projec­
tion matrix P = P (x) dependent on the population state variable x with 
the result that the matrix equation is nonlinear. 

The main biological focus of this chapter, as it is in Chapter 1 for the 
m = 1 case, is on the question of the population's extinction versus sur­
vival. Mathematically, this focus is on the stability or instability of the 
extinction equilibrium. The main theorems of the chapter show that, 
under general conditions, the bifurcation of positive (survival) equilibria 
that occurs when the extinction equilibrium destabilizes is not vertical, 
as it is for linear equations, but is either forward or backward. More­
over, when the inherent projection matrix is primitive, the stability of 
the bifurcating positive equilibria is correlated with the direction of bi­
furcation. 

For example, when r0 (or R0 ) is used as the bifurcation parame­
ter, a forward bifurcation produces stable positive equilibria, while a 
backward bifurcation produces unstable positive equilibria. This gen­
eral result is, however, limited to a neighborhood of the bifurcation point 
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r0 = 1 (or R0 = 1) and Xe = Orn; outside this neighborhood, other bifur­
cations can occur as the positive equilibria change their stability proper­
ties to form other equilibria, periodic cycles, or invariant loops. 

Of particular interest, is the occurrence of a strong Allee effect as a 
consequence of a backward-unstable bifurcation. A strong Allee effect 
is a scenario in which multiple stable attractors exists, one of which is 
the extinction equilibrium and another of which is a survival attractor. 
This general state of affairs requires the technical assumption that the 
inherent projection matrix is P (Om) primitive. When this technical as­
sumption is dropped, other more complicated bifurcations can occur in 
the neighborhood of the bifurcation point. This is illustrated in Sections 
3.6 and 3. 7.3 by the simultaneous bifurcation of synchronous cycles and 
positive equilibria. 

3.9. Exercises 

Exercise 3.35. Verify that (3.4) is a solution of the juvenile-adult model 
(3.2) when b2s1 =I=- 1. 

Exercise 3.36. Use the formulas for r0 and R0 for the juvenile-adult 
model in Example 3.15 to corroborate Theorem 2.15. 

Exercise 3.37. Calculate R0 and apply Theorem 3 .22 to the matrix equa­
tion with these fertility and transition matrices (all coefficients are pos­
itive): 

(a) F(x)= [ ~ b2 exp (-c~x1 - C2X2) ] and T (x) = [ 0 

~ l S1 

(b) F(x) = [ 
0 b,= l [ O 0 ] ; l+cx~ and T (x) = 
0 0 S1 S2 

(c) F(x) = [ 
0 0 b2 exp(-C1X1 - CzX3) 

] and 0 0 0 
0 0 0 

T(x) = [ 
0 0 0 l S12 0 0 
0 S32 exp (-C3X3) S33 
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(d) F(x) = r 
0 0 

e-c1x4 e-c1x4 
b b4 w,x,+,,x, j 3 l+c1x3+c2x 4 

0 0 0 O and 
0 0 0 0 
0 0 0 0 

T(x) = r 
Sn 0 0 0 

1-

S21 0 0 0 
0 S3e-CsX2 0 0 
0 0 S4e-c6x3 S4e-c7x4 

Exercise 3.38. Prove Theorem 3.9) by adapting the proof of Theorem 
1.10 given in Appendix A.2. 

Exercise 3.39. Verify that 

[ 
b2X1(O) 

l icx1 (O)+b2 when t = 2i for i E Z+ 

[ X1 (t) 
] = 

Xz(O) 
icx2(O)+l 

X2 (t) [ 
b2x2(O) 

l (i+ l)CXz(O)+ 1 when t = 2i + 1 for i E Z+ X1(O) 

icx1 (O)+b2 

is a formula for the solution of the semelparous juvenile-adult model 
(3.2) when b2s1 = 1 and use it to show that the extinction equilibrium is 
globally asymptotically stable. 

Exercise 3.40. Prove that the Jacobian of P (x) x evaluated at xe = Om 
is the inherent projection matrix P (Om), 

Exercise 3.41. Find a formula for the positive equilibrium of the 
iteroparousjuvenile-adult model in Example 3.24 when b > bO• Use the 
formula to perform a stability analysis and show that the positive equi­
libria are locally asymptotically stable for all values of b > bO. (Theorem 
3.21 guarantees stability only for b ~ b0 .) 

Exercise 3.42. Suppose in the nonlinear Leslie matrix in Example 3.25 
that all the density factors are identical (i.e., j3/x) = exp(-cp) and p = 
Z:::;11 wjxj). (This is the case studied in [102].) We saw in Example 3.25 
that the general bifurcation theory shows there exist positive equilibria 
for RO ~ 1. 

(a) Show that there exists a unique positive equilibrium for ev­
ery R0 > 1 by finding an algebraic formula for the positive 
equilibria. 
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(b) Based on what we learned about the Ricker difference equation 
in Chapter 1, we should not be surprised if the bifurcating pos­
itive equilibria that are stable for R0 ~ 1 might lose stability as 
R0 increases. Here is an example to confirm this. Consider the 
m = 2 dimension case with just two age classes and take pa­
rameter values b1 = 1, b2 = 20, s1 = 0.1, and s2 = 0.05. Show 
R0 > 1 and calculate the positive equilibrium x = col(x1, x2). 

Use the Linearization Principle to show that this positive equi­
librium is unstable. 

Exercise 3.43. Show that for R0 ~ 0.67, the positive equilibrium of the 
juvenile-adult model in Example 3.27 obtained from the larger root x2 

(using the plus sign in (3.26)) is stable and that the positive equilibrium 
obtained from the smaller root x2 (using the minus sign in (3.26)) is un­
stable. (HINT: Find first degree Taylor polynomial approximations to 
the eigenvalues ,1 = ,1 (R0 ) of the Jacobian evaluated at the positive equi­
libria, using first degree Taylor polynomial approximations of the roots 
x2 = x2 (R0 ) :=::::,; x2 (0.67) + a Ro (0.67) (R0 - 0.67) centered at R0 = 0.67.) 

Exercise 3.44. In Example 3.28, prove the assertions concerning the 
eigenvalues as a function of R0 . 

Exercise 3.45. Prove that Jf2 ) (x) = Jf (x1) Jf(x), where x1 = f (x). 
Then by induction, prove that 

Jf p) (x) = Jf(xp_ 1) Jf (xp_2) • • · Jf (x1) Jf(x), 

where xi = f(i) (x) and p ~ 3 is an integer (that is, f(l) (x) is the same as 
f(x)). 

Exercise 3.46. In Example 3.32, verify the formula for R0 and the for­
ward and backward bifurcation inequalities. 

Exercise 3.47. Prove that the eigenvalues of the semelparous Leslie ma­
trix (3.50) are given by (3.51). 

Exercise 3.48. Consider the m = 2 dimensional juvenile-adult model 
with fertility and transition matrices 

[ 
O beµ_l ] 

F = O 1;c2x2 and T = [ 0 0_µ ] . 
S1 s2e 

Here,µ > 0 represents the effort put into gathering food resources, and 
the birth rate beµ is an ( exponentially) increasing function of this effort. 
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This effort in resource gathering results, however, in a decreased adult 
survival, a trade-off expressed in the entry s2e-µ. 

(a) Calculate the inherent reproduction number and consider it as 
a function ofµ. 

(b) Assume R0 < 1 whenµ = 0 and show, in this case when no ef­
fort is expended in resource gathering, that the extinction equi­
librium is globally asymptotically stable (and hence the popu­
lation goes extinct). 

(c) When R0 < 1 whenµ = 0, use Theorem 3.22 to show that 
there exists a unique value µ 0 > 0 at which a forward and 
stable bifurcation of positive equilibria occurs as µ increases 
throughµ 0 • 

(d) Extend the result in (c) by solving the equilibrium equations 
and performing a stability analysis by using the Linearization 
Principle. 

Exercise 3.49. In his modeling study of periodical insects, Bulmer [11] 
also considers the effect that predation on the emerging adults has. He 
does this by introducing another factor into the fertility density term 
j3 (x) in the projection matrix (3.49). The factor is taken to be an in­
creasing function of adult density Xm in order to model the so-called 
predator saturation effect. This effect assumes that a population of 
predators can consume only so many emerging adults and that if only 
few adults emerge, nearly all will be eaten and reproduction will be low, 
but if more adults merge, then more will survive predation and repro­
duction will be greater. The factor Bulmer uses is 1- exp (-pxm), p > 0, 
and in the m = 2 dimensional case, this leads to the projection matrix 
(3.49) with 

j3 (x) = exp(-c21 x1 - c22x2 ) (1- exp(-px2)) and 

cr1 (x) = exp(-c11 x1 - c12x2). 

(a) Use Theorem 3.33 to determine conditions on p and on the 
competition coefficients cij under which the bifurcations of 
both the positive equilibria and synchronous 2-cycles are for­
ward (and hence the dynamic dichotomy described in Theo­
rem 3.33 holds). Does the conclusion that sufficiently strong 
interclass competition causes the synchronous 2-cycles to be 
stable still hold? 
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(b) Assume when predation is absent (p = O) that, in the dynamic 
dichotomy of Theorem 3.33, the bifurcation of positive equilib­
ria is forward and stable. Show that under this circumstance, 
it is possible for predation to reverse the stability alternative in 
the dichotomy (i.e., that there are values of p > O for which 
the synchronous 2-cycles are stable). This shows that, under 
the right circumstances, predation can be the cause of a peri­
odical life cycle. 

Exercise 3.50. The stability of the extinction equilibrium and the bifur­
cation of positive equilibria upon its destabilization are related to the in­
herent population growth rate r0 in Theorems 3.13 and 3.21 and to the in­
herent reproduction rate R0 in Theorems 3.22 and 3.17. In general, nei­
ther of these two quantities appear explicitly in a matrix model, but they 
are quantities derived from the parameters in the model equations. One 
can instead relate the stability and bifurcation results in these theorems 
to a parameter, call itµ, that does appear explicitly in the model equa­
tions by asking, When does a change in µ cause r0 to increase through 
1? Since r0 depends onµ, we write r0 (µ). 

Suppose there exists a value µ 0 for which r (µ0 ) = 1 (equivalently 
R0 (µ0 ) = 1). Use (2.36) and the chain rule to show that 

dr0 (µ0 ) = _l_wT dP(µo) v 
dµ wTv dµ · 

It follows that if dr0 (µ0 ) Idµ > 0 (or dr0 (µ0 ) Idµ < O), then r0 (µ) in­
creases through 1 asµ increases (respectively decreases) through µ 0 and 
the extinction equilibrium destabilization and positive equilibria bifur­
cation results of Theorems 3.13 and 3.21 apply. 

This relates these stability and bifurcation results to the signs of the 
derivatives dpij (µ0 ) Idµ of the entries Pij in the projection matrix. As 
an example, if all entries Pu(µ) that depend onµ are (strictly) increasing 
functions ofµ (at least whenµ = µ 0 ), then one knows immediately that 
the destabilization of the extinction equilibrium and a forward-stable bi­
furcation of positive equilibria occur asµ increases through µ 0 • 





Chapter 4 

Disease and Epidemic 
Models 

In a structured population model designed to study the spread of a dis­
ease through a population, individuals are classified according to a se­
lection of disease-related categories: susceptible, infected, infectious, re­
covered, quarantined, vaccinated, and so on. Because of the obvious in­
terest and importance of understanding epidemics, there is a huge (and 
continually growing) amount ofliterature in which models for innumer­
able kinds of diseases are derived and analyzed. Almost all of these mod­
els structure a population (in some cases the pathogen causing the dis­
ease as well) into a finite number of discrete categories. Tracking these 
subpopulations in continuous time results in models based on differ­
ential equations. On the other hand, there is substantial literature on 
models in discrete time disease as well. This chapter contains a brief in­
troduction to the discrete time modeling of diseases and the dynamics 
of epidemics, treating the subject in the spirit of and using the analytic 
methods in Chapters 2 and 3. A good reference for both differential- and 
difference-equation-based epidemic models is [9]. 

4.1. Preliminaries 

For the populations models considered in Chapters 2 and 3, a basic con­
cern is with the extinction or survival of the population ( or mathemati­
cally, the stability of the extinction equilibrium Xe = 0). For a model 
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structured by classes related to a disease, the main concern is gener­
ally not with the extinction of the population, but instead with the ex­
tinction of the infected classes within the population. For this reason, 
we begin our model building by applying the basic discrete time mod­
eling methodology to the infected classes, which we place in a vector 
x1 E R~. The remaining classes we denote by x2 E R~. For exam­
ple, in the lowest-dimensional case, x1 = [x1] is the (scalar) class of 
infected (and infectious) individuals, and x 2 = [x2 ] is the (scalar) class 
of noninfected, but susceptible individuals (and in these one­
dimensional cases, we as usual drop the bracket notation). With these 
epidemic class distinctions, we can write a general epidemic model in 
the form 

(4.1) 
(a) x1 (t + 1) = f1 (x1 (t), x2 (t)) 
(b) x2 (t + 1) = f2 (x1 (t) ,x2 (t)). 

We assume that infections only occur by transmission from infected in­
dividuals so that Om = f1 (Om,x2 ). We also assume that in the absence 
of the disease, the population has a stable equilibrium, that is to say the 
disease-free equation 

(4.2) 

has a (locally asymptotically) stable equilibrium. These requirements 
are part of our general assumptions on 

f (x) == col(f1 (x1 , x2), f2 (x1, X2)) 

for the model equations ( 4.1) and are summarized as follows. 

Assumption 4.1. f E C2 (Rm+n : Rr;_'+n). Furthermore, Om = 
f1 (Om,x2 ) for all x 2 E R~, and there exists x 2e E R~, x 2e #- On such 
that X2e = f2 (0m,X2e) and p(1x/2 (0m,X2e)) < 1, where 1x/2 is the 
n x n Jacobian off2 (xi, x2 ) with respect to x2 . 

Under Assumption 4.1, the system of equations (4.1) has the disease­
free equilibrium 

(4.3) 

Example 4.2. A Susceptible-Infected (SI) Model. Consider a popu­
lation of susceptibles x2 whose dynamics are governed, in the absence 
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of the disease, by the equation 

(4.4) 

with b0, c > 0 and O < as < 1 

(as in Section 1.2). In the presence of the disease, we let rp be the fraction 
of susceptibles x2 who do not become infected (per unit time). This frac­
tion (called the escape probability) depends, of course, on the number 
of infected individuals x1, so we write rp = rp (x1). Then the fraction of 
surviving susceptibles that remain susceptible at t + 1 is a5 rp (x1), and 
the equation for the susceptibles x2 becomes 

1 
X2 (t + 1) = bo l ( /2 (t) + as({J (X1 (t)) X2 (t). + CX2 t 

The fraction of susceptibles that become infected (per unit time), and 
hence move into the infected class, is (1 - rp (x1)) as; thus, the infected 
class is given by (the newly infected plus the surviving infected) 

where a1 is the survival probability of infected individuals. 

We assume the escape function rp (x1) is a decreasing function of 
x1 (i.e., 8x1 rp (x) < O for x ~ O) that equals 1 at x1 = O (no infection 
occurs when no infected individuals are present) and approaches O as 
x1 ➔ oo (the probability of escaping infection drops to Oas the class of 
infected individuals increases without bound). 

The equations for this suceptible-infected model (or SI model) are 

(a) x1 (t + 1) = (1 - rp (x1 (t))) a 5 x2 (t)) + a1x1 (t) and 
1 

(b) X2 (t + 1) = bl+cx2(t)X2 (t) + ({J (X1 (t)) asX2 (t) 
(4.5) 

and have the form (4.1) with 

f1 (x1,x2) = (1- rp (x1)) a5 x2 + a1x1 and 

1 
f2(x1,x2) = bo 1 X2 +asrp(x1)X2, + CX2 

(We drop the bracket notation for one-dimensional vectors.) It is 
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straightforward to show that Assumption 4.1 is satisfied by the equilib­
rium 

Xze=~(b-1 
1 -1), 

C - r:Js 

1 
b-->l 
1- as 

(which by Theorem 1.26, is in fact globally asymptotically stable on 
int (R+)). The disease-free equilibrium of the SI model is 

1 
b-- > 1. 
1- as 

□ 

A cycle graph associated with the SI model in example 4.2 appears in 
Figure 4.1. Note that in this elementary model, it is assumed that new­
borns are susceptible (i.e., none are born infected), infected individuals 
do not reproduce, and there is no recovery from the disease. 

Figure 4.1. A cycle graph for the SI model ( 4.5). 

Remark 4.3. A remark about notation: In epidemic models, it is common 
to denote the state variables by (usually uppercase) letters suggestive of their 
disease-related definitions, such as I for infected, S for susceptible, R for 
recovered, and so on. With this notation, a common way of writing the 
basic SI model ( 4.5) is 

1 
S(t + 1) = b 1 + cS(t/Ct) + rp(I(t))a8 S(t) 

I(t + 1) = (l-rp(I(t)))a8 S(t)) + a1I(t). 
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While we will occasionally adopt this suggestive notation, we will for the 
most part keep the state variable notation xi so as to be notationally con­
sistent with the notation in earlier chapters on structured population dy­
namics. 

4.2. Disease-Free Equilibria and R0 

If the disease-free equilibrium 

Xe= [ Om ] 
X2e 

is (locally asymptotically) stable, then x (0) near xe implies 

lim X1 (t) = Om, 
t--+oo 

that is to say when the susceptible population is at or near its equilib­
rium, then an infection will ultimate disappear after an invasion by a 
small population of infected individuals. To attain this desirable result, 
so as to avoid the disease remaining in the population (i.e., becoming 
endemic), we are interested in conditions under which the disease-free 
equilibrium is stable. Towards this end, we apply the Linearization Prin­
ciple by calculating the Jacobian matrix associated with the model equa­
tions (4.1) evaluated at the disease-free equilibrium: 

lxf(xe) == lxf (x)lx=xe · 

By Assumption 4.1, we obtain a block diagonal matrix 

lxf(xe) = [ JJx1ff1 ((00, Xze)) J fOm(Oxn ) ] ' 
x2 2 , Xze x2 2 , Xze 

where Jx/i (x0 , x1) is the Jacobian of fj with respect to xi and evaluated 
at the disease-free equilibrium (4.3) 

Jxfj(0,xi)==Jxfj(Xo,X1)I( )-( *)" 
i i x0 ,x1 _ O,x1 

The eigenvalues of lxf (xe) consist of the eigenvalues of the diagonal 
blocks Jx/1 (0,x2e) and Jx/2 (0,x2e). Since p (lx/2 (Om,X2e)) < 1 by 
Assumption 4.1, the eigenvalues of the diagonal block lx/2 (Om, x2e) all 
lie within the unit circle of the complex plane, and as a result, the stabil­
ity of the disease-free equilibrium is determined, according to the Lin­
earization Principle, by the eigenvalues of the remaining diagonal block 
1x1 f1 (0, x2e). In particular, if p ( 1x1 f1 (0, x2e)) < 1, then the disease-free 
equilibrium is (locally asymptotically) stable. 
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The term f1 (x1 , x2 ) in equation ( 4.5)(a) describes the dynamics of 
the infected classes in the vector x1 . We model it by adding newly in­
fected individuals to the surviving infected individuals to get 

Then we can write the Jacobian as 

where we use the notation 

(4.6) 
F(0,x2e) == Jx1n(0,X2e) 
T (0, X2e) == Jx1 S (0, Xze), 

which is directly analogous to that used in the calculation of R0 in Sec­
tion 3.3. (In this analog, F (0, x2e) is associated with newly infected indi­
viduals rather that with newborns.) As in Chapter 3, we can equivalently 
determine the stability of the disease-free equilibrium using 

(4.7) 

instead of p (Jx/1 (0, x2e) ). The entries in F (0, x2e) and T (0, x2e) are, 
respectively, per capita rates of new infections and survival with class 
transitions; therefore, in a properly formulated model, these two matri­
ces will satisfy the assumptions needed for us to apply Theorem 2.15 and 
Theorem 3.17. We can assign an interpretation of the reproduction num­
ber R0 as the average number of new infections (called secondary in­
fections) per infectious individual over the time spent infectious (see 
Section 2.3.2). 

Theorem 4.4. Assume Assumption 4.1 and that F (0,x2e) and T (0, x2e) 
defined by ( 4.6) satisfy (2.2) in Chapter 2 with p (T (O, x2e)) < 1. Then 
the disease-free equilibrium is (locally asymptotically) stable if R0 < 1 and 
unstable if R0 > 1, where the reproduction number R0 is defined by ( 4. 7). 

4.3. Examples 

In this section, we illustrate further the methodology of building dis­
ease models and the use of Theorem 4.4 to study stability properties of 
disease-free equilibria. 
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4.3.1. The Susceptible-Infected (SI) Model. As seen in Example 4.2, 
the SI model described by equations ( 4.5) has a (unique) disease-free 
equilibrium 

(4.8) Xe = [ XO ] = [ ~ (b _l_ - 1) ] , 
2e c 1-as 

1 
b-->l 
1- CJs 

for which Assumption 4.1 holds. From equation ( 4.S)(a), we identify 

n (x1 , x2 ) = (1 - q, (x1)) CJ sX2 and s (xi, x2) = CJI x1 

and calculate, using formulas ( 4.6 ), 

F(O,x2e) = -Ox1q,(0)asX2e > 0 and T(O,x2e) = aI < 1 

from which, together with formula ( 4. 7), we obtain 

1 
Ro= -Ox1 q,(0)asX2e-1-- > 0. 

- (JI 

Notice that among the factors that make up R0 are -q,' (0) > 0, which is 
called the force of infection, and 

1 00 . 

-1-- = 1 + (JI + aJ + ... = I CTJ, 
- aI j=O 

which is the expected time an individual remains infected. 

The elementary SI model in Example 4.2 and Section 4.3.1 assumes 
the escape function depends only on the number x1 of infected individ­
uals alone. Another modeling assumption is that q, also depends on the 
number of susceptibles. For example, consider the following derivation 
of an escape function for the SI model. 

Assume, in a small interval of time flt, that a susceptible individual 
comes into contact with at most one other individual and that contact 
with any individual in the population is equally likely with any other. 
Assume the probability a contact with another individual occurs is pro­
portional to 11t and write it as nl1t, where n > 0 is the constant of propor­
tionality. If a contact occurs, then the probability it is with an infected 
individual equals the fraction of infected individuals in the population 
(i.e., equals x1/p, where 

p = X1 + X2 

is the total population size). With this notation, we have that the prob­
ability a susceptible individual contacts an infected individual during a 
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time interval of length flt equals 

Xi Trflt. 
p 

Will the contact result in an infection? If the probability of infection 
from a contact with an infected individual is i, then the probability the 
susceptible individual becomes infected during the time interval flt is 
approximately 

X1 Ci-flt, 
p 

where ci == irr. It follows that the probability a susceptible escapes in­
fection during the interval M is equal to 

X1 
1-ci-M. 

p 

In order to avoid infection from t to t + 1, an individual must avoid in­
fection a total of 1/ flt times. The probability that this occurs is 

I 

( 1 - c/; flt) KI 

Letting M----* 0, we have from calculus that 
I 

<p (x) == lim (1 - ci Xi flt) KI = exp (-ci Xi) 
LihO p p 

is the probability that a susceptible escapes infection from time t to t + 1. 

The equations for the SI model in Example 4.2 with the escape func­
tion 

are 

(4.9) 

From 

x1 (t + 1) = ( 1 - exp(-c/;c~i)) cr5 x2 (t) + cr1x 1 (t) and 

x2 (t + 1) = bl+c:z(t)x2 (t) + exp(-ci x:c~i) cr5 x 2 (t). 

n(x1,x2 ) = (1- exp(-ci Xi )) cr5 x2 and s(x1,x2) = cr1x1 , 
X1 + X2 

we see, using formulas ( 4.6), that 

F(O,x2e) =Ciers> 0 and T(O,x2e) = UJ < 1 



4.3. Examples 

from which, by formula ( 4. 7), we obtain 

1 
(4.10) Ro= CiCJs-1--. 

- CJ1 
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By Theorem 4.4, the disease-free equilibrium ( 4.8) of ( 4.9) is (locally 
asymptotically) stable if R0 < 1 and is unstable if R0 > 1, where R0 is given 
by formula (4.10). 

4.3.2. A Susceptible-Infected-Recovered (SIR) Model. The SI mod­
el ( 4.5) in Example 4.2 and Section 4. 3.1 is very basic in that it structures 
the population into only two disease related classes: infected and sus­
ceptible individuals. More sophisticated models include any number of 
other disease related classes, such as individuals who are recovered and 
immune from the disease, exposed but not yet infectious, exposed but 
quarantined, immune by vaccination, and so on. In this section, we con­
sider a basic example that includes three classes: infected, susceptible, 
and recovered individuals. 

In this model, x1 = [ xi] and x2 = col (x2 , x3), where the numbers 
in the classes of infected ( and infectious), susceptible, and recovered in­
dividuals are denoted by Xi, x2 , and x3, respectively. We assume an in­
fected individual can recover from the infection. Individuals in the re­
covered class are neither infected nor susceptible to infection and hence 
have acquired immunity. We allow in the model, however, for the pos­
sibility that immunity is not permanent, and there is a probability that 
a recovered individual will again become infected. The cycle diagram 
appears in Figure 4.2. 

For the dynamics of x1, we use the escape function similar to that in 
the SI model developed in Section 4.3.1: 

cp (x) = exp(-ci;), 

where now the total population size is 

Then the equation for the infected class x1 is 
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where: 
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Figure 4.2. A cycle graph for the SIR model (4.11). Only transitions 
among classes are indicated (removals by deaths are not indicated). 

• PI is the probability an infected individual recovers from the 
disease (per unit time); hence, 1 - Pr is the probability a (sur­
viving) infected individual remains infected; 

• n (x1,x2 ) = ( 1 - exp(-ci ; 1 )) a5 x2 ; 

• s (xi,x2) = ar (1- Pr) X1. 

For the susceptible class Xz, we have an equation similar to that in 
the SI model in Section 4.3.1 except with an added input of new suscep­
tibles from the recovered class x3• Thus, 

where PR is the probability a surviving recovered individual becomes 
again susceptible (hence, 1 - PR is the probability it remains immune) 
and aR is the survival rate ofrecovered individuals. 

Finally, the recovered individuals at time t + 1 equals the newly re­
covered individuals arPrX1 (t) from the infected class plus the surviving 
recovered individuals from time t: 
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In summary, the equations for this SIR model are 

(4.11) 

(a) x1 (t + 1) = ( 1 - exp(-ci ; 1c~?)) CJsX2 (t) 

+ (JI (1- P1) X1 (t); 
1 

(b) Xz (t + 1) = bl+c(xz(t)+x3(t)) (X2 (t) + X3 (t)) 

+ exp(-ci ;(~?) (J sX2 (t) + (JRPRX3(t); 

(c) x 3(t + 1) = CJ1p1x 1 (t) + CJR (1 - PR) x/t). 
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If PR = 0, then the model assumes permanent immunity after recov­
ery from the disease. If p R > 0, then immunity is only partial. A cycle 
graph for this model is shown in Figure 4.2. 

In Exercise 4.12, the reader is asked to show that the disease-free 
equilibrium 

b 
-->l 
1 - CJs 

of the disease-free equilibrium equations 

1 
X2 (t + 1) = b l+c(x (t)+x3(t)) (X2 (t) + X3 (t)) 

+ exp(-ci x;c~?) CJ sX2 (t) + CJRPRX3(t) and 

xit + 1) = CJ1p1x1 (t) + CJR (1- PR) xit) 

(obtained by setting x1 equal to 0 in the SIR model equations (4.11)) sat­
isfies Assumption 4.1. From equation (4.ll)(a) and formulas (4.6), we 
have that 

F(O,x2e)=ciCJs>0 and T(O,x2e)=CJrCl-pr)<l; 

from formula ( 4. 7), we have that 

(4.12) 

We conclude that the disease-free equilibrium x2e of 
the SIR model (4.11) is (locally asymptotically) stable 
if R0 < 1 and is unstable if R0 > 1, where R0 is given 
by the formula ( 4.12). 
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Remark 4.5. Ifwe use the notation S, I, and Rfor the classes of suscepti­
ble, infectious, and recovered individuals, respectively, then the SIR model 
equations (4.11) are 

1 
S (t + 1) = b l+c(S(t)+R(t)) (S (t) + R (t)) 

+ exp(-ci ~~!i) (J sS (t) + CJRPRR(t), 

I ( t + 1) = ( 1 - exp ( -c i ~~i) ) ) as S ( t) + a I ( 1 - p I )I ( t ), and 
R(t + 1) = CJrPrI(t) + (JR (1-pR)R(t). 

4.3.3. An SAIR Model. In the SI and SIR models in Sections 4.3.1 and 
4.3.2, there is only one infectious class (m = 1). This implies that the 
matrices needed are 1 x 1, and as a result, the calculation of the next 
generation map and R0 is relatively simple. In this section, we extend 
the SIR to include m = 2 infectious classes. This will require us to deal 
with 2 x 2 matrices in the calculation of R0 • 

In the vector x1 = col (x1, x2 ) of infected individuals, let 

• x1 = infectious but asymptomatic individuals; 

• x2 = infectious but symptomatic individuals. 

In the vector x2 = col(x3 , x4) of noninfected individuals, let 

• x3 = susceptible individuals; 

• x4 = recovered and nonsusceptible individuals. 

We assume all newly infected individuals are at first asymptomatic but 
have probability PA of becoming symptomatic after a unit time. 

Let q:, 1 and q:,2 be the probabilities that a susceptible individual es­
capes infection by an asymptomatic individual or by a symptomatic in­
dividual, respectively. Then q:, 1 q:, 2 is the probability of escaping infection 
altogether, and l -cp1 cp 2 is the probability of becoming infected (per unit 
time). We assume cp i is a decreasing function of the fraction xi Ip. Specif­
ically, following the derivation in Section 4.3.1, we take 

where 
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is the total population size. Then the escape function is 

and we obtain the following extension of the SIR model in Section 4.3.2: 

(4.13) 

(a) 

(b) 

(c) 

(d) 

X1 (t + 1) = ( 1 - exp( - C1X1 u~7t;2X2(t))) CJ5X3 (t) 

+er A (1- PA) X1 (t); 
X2 (t + 1) = CJAPAX1 (t) + err (1 - Pr) X2 (t); 

1 
X3 (t + 1) = b l+c(x3 (t)+x4 (t)) (X3 (t) + X4 (t)) 

+ ( C1X1(/)+C2X2(/)) (t) exp - p(t) CJ5X3 

+CJRPRXit); 
xit + 1) = CJrPrX2 (t) + CJR (1 - PR) X4(t). 

In this case, er 5, er A, err, and crR are the survival probabilities of suscep­
tible, asymptomatic, symptomatic, and recovered classes, respectively. 
The coefficients PA, Pr, and PR are, respectively, the fractions of asymp­
tomatic individuals that become symptomatic, symptomatic individuals 
that recover, and recovered individuals that lose immunity and become 
again susceptible. The cycle graph for the SAIR model ( 4.13) appears in 
Figure 4.3. 

Figure 4.3. A cycle graph for the SAIR model (4.13). Only transi­
tions among classes are indicated (removals by deaths are not indi-

cated). 
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The disease-free equation ( 4.2) can be written as the two difference 
equations 

1 
X3 (t + 1) = b l+c(xJ(t)+x4(t)) (X3 (t) + X4 (t)) 

+crsX3 (t) + aRPRXit) and 
xit + 1) = aR (1 - PR) x4(t), 

which are mathematically the same as the SIR model of Section 4.3.2 
with x3 and x4 substituted in place of x2 and x3, respectively. By Exercise 
4.12, these equations have a (locally asymptotically) stable equilibrium 

b 
-->l 
1- cr5 

that satisfies Assumption 4.1. Thus, the SAIR model (4.13) has the 
disease-free equilibrium 

(4.14) b 
-->l. 
1- as 

To apply Theorem 4.4, we need to calculate R0 . 

The equations (4.13) have the form of the general epidemic model 
(4.1) with 

and 

(4.15) 

where 

(4.16) 

f1 (x1, X2) = [ ( l - exp (- X1c::~:~::\4)) CJ5X3 + (JA (I - PA) X1 ] 

CJAPAX1 + CJr (1 - Pr)x2 
f2 (x1,x2) = n(xi,x2) + s(x1,x2), 

[ (1 ( C1 X1 +c2X2 )) 
n(x1,X2) = - exp - X1+~2+x3+X4 crsX3 

( ) [ c,A(l-pA)X1 ] S X1,X2 = . 
aAPAX1 + crrCl-pr)X2 

Notice the zero component in n (xi, x2), which is the result of the as­
sumption that all newly infected individuals are asymptomatic and 
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hence lie in the x1 class. From formulas (4.6), we get the Jacobians 

and 

T(0,X2e) = [ CJA (1-pA) (10 ) ] . 
CJ APA err - Pr 

Notice that F (0, x2e) has a row of zeros, which produces in a row of zeros 
in the next generation matrix F (02 , x2e) (I - T (02 , x2e))- 1, which is 

-1 

[ CJ5C1 CJsC2 ][ 1-crA(I-pA) 0 ] 
0 0 -CJAPA 1-crr(l-pr) 

and whose dominant eigenvalue therefore appears in the upper-left cor­
ner as 

( ) 1 PA 4.17 R0 =a5 c1-----+a5 c2-----------. 
1- aA (1 - PA) (1 - aA (1- PA))(l - ar (1 - Pr)) 

From Theorem 4.4, we conclude that the disease-free equilibrium 
(4.14) of the SAIR model (4.13) is (locally asymptotically)stable if R0 < I 
and unstable if R0 > I, where R0 is given by the formula ( 4.17). 

Remark 4.6. Ifwe use the notation S, A, I, and Rfor the classes of sus­
ceptible, infectious asymptomatic, infectious symptomatic, and recovered 
individuals (x3, x1, X2, and x4 ), respectively, then the SAIR model equa­
tions ( 4.13) are 

1 
S (t + 1) = bl+c(S(t)+R(t)) (S (t) + R (t)) 

+ (- c1 I(t)+c2A(t)) S (t) exp p(t) er s 
+CJRPRR(t), 

A (t + 1) = ( 1 - exp(- ciIU~:~zA(t))) CJsS (t) + CJA (1 - PA)A (t), 

I(t + 1) = CJAPAA(t) + err (1- Pr)I(t), and 
R(t + 1) = CJrPrI(t) + (JR (1-pR)R(t). 

In this notation, the state variables are listed in the order of disease pro­
gression. 

In the SAIR model of Section 4.3.3, asymptomatic individuals do 
not recover without first becoming symptomatic. An alternative would 
allow that asymptomatic individuals can recover without becoming 
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symptomatic; see Exercise 4.13. Another extension is to allow newly 
infected susceptibles to be either asymptomatic or symptomatic; see Ex­
ercise 4.14. 

4.4. Endemic Equilibria: A Basic Bifurcation Theorem 

Theorem 4.4 (and the examples in Section 4.2) focuses on the stability 
of a disease-free equilibrium. This desirable outcome, when a low-level 
infection ultimately dies out and a persistent epidemic is avoided, occurs 
in general when R0 < 1. In this section, we consider the existence and 
stability of endemic equilibria (i.e., equilibria x = col (x1 , x2) E Rm+n, 

x1 i- Om) of the model equations (4.1): 

(4.18) 
(a) x 1 (t + 1) = f1 (x1 (t), x2 (t)); 
(b) x2 (t + 1) = f2 (x1 (t) ,x2 (t)). 

The existence and stability of such an equilibrium would imply that the 
disease does not ultimately die out and would be endemic in the popu­
lation. 

Theorem 4.4 provides conditions under which a disease-free equi­
librium 

(4.19) 

loses stability as R0 (defined by (4. 7)) increases through 1. Based on the 
analogous situation with general population dynamic models in Chap­
ter 3, we suspect that this destabilization will result in a (transcritical) 
bifurcation of endemic equilibria from the disease-free equilibrium and 
that their stability will be related to the direction of bifurcation. This 
bifurcation is the subject of Theorem 4.7. 

Recall that a diagnostic quantity called K was key to determining the 
properties of the bifurcation at R0 = 1 in the general Theorem 3.21 given 
for population models. The same is true for the bifurcation at R0 = 1 for 
general disease models. To define this quantity, we start by identifying 
the entries pij (x1, x2 ) of the Jacobian matrix 

J£J1 (x1, Xz) = [Pij (x1, Xz)] • 

Then we define 

(4.20) 
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where 

(4.21) Kij •=vtpij · V 

0 ( 0 )-l 0 + Vx2 Pij · I - Jxi2 (Om,X2e) Jx/2 (Om,X2e)V 

and wT and v are positive left and right eigenvectors of J~1 f1 (Om, x2e) 
associated with the eigenvalue 1. (A superscript "O" now denotes evalu­
ation at the disease-free equilibrium x = col(Om, x2e) when R0 = 1.) 

Theorem 4.7. [64] As in Theorem 4.4, assume Assumption 4.1 and that 
F(O,x2e) and T (O,x2e) (defined by (4.6)) satisfy (2.2) in Chapter 3. As­
sume, in addition, that p [T (Om, x2e)] < 1 and K =j:. 0. 

(a) Then endemic equilibria of equation ( 4.18) bifurcate from the 
disease-free equilibrium ( 4.19) at R0 = 1. Their bifurcation is 
forward if K > 0 and backward if K < 0. 

(b) If J~/1 (x1 , x2 ) is primitive, then K > 0 implies the forward bi­
furcation is stable, and K < 0 implies the backward bifurcation 
is unstable. 

While the technical details of the proof of this theorem are beyond 
the level of this book, the basic idea behind the proof is straightforward. 
Solving the equilibrium equation x2 = f2 (x1,x2 ) associated with equa­
tion (4.18)(b) forx2 as a function ofx1 (by means of the Implicit Function 
Theorem in Appendix A.1) and substituting the answer into the equilib­
rium equation associated with equation (4.18)(a), we get a matrix equa­
tion for x 1, to which we apply the bifurcation Theorems 3.21 and 3.22. 

Example 4.8. In Section 4.3.1, we saw that the disease-free equilib­
rium 

of the SI model 

X2e = ~ (-b- -1), c 1- as 
b 

-1-- > 1, -as 

(4.22) 
x1 (t + 1) = ( 1 - exp(-ci xi(~~;2(ti)) asx2 (t) + a1x 1 (t) 

x 2 (t + 1) = b 1+c~2(t) x2 (t) + exp(-ci xi(~~;2Ct)) a sX2 (t) 

loses stability as 
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(A) R 0 = 0.900 

00000000000 

x 2 =S 

X1 =I 
OOQoQoQoQoQ 

0 2 4 6 8 10 490 492 494 496 498 500 

time 
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{B) R0 = 1.575 

x2 =S 
~ 

00000000000 

X1 =I 
I I I I I I 

0 2 4 6 8 10 490 492 494 496 498 500 

time 

Figure 4.4. Sample solutions of the SI model equations (4.22) with 
parameter values crs = 0.9, cr1 = 0.8, b = 1, and c = 1.5 and initial 
conditions x1 (0) = 0.5 and x2 (0) = 3. (A) With force of infection 
c; = 0.2, the reproduction number R0 < 1, and the disease-free equi­
librium Xe = col(0, 6) is stable. (B) With force of infection c; = 0.35, 
the reproduction number R0 > 1, and the disease-free equilibrium 
Xe = col(0, 6) is unstable. In this case, we see that the solution ap­
proaches an endemic equilibrium Xe = col(l.321, 2.707). 

increases through 1. To apply Theorem 4.7, we need to calculate K from 
formulas (4.20)-(4.8). 

In this example, m = n = 1, and the vectors and matrices in 
these formulas are all scalars, so we drop the bracket notation. In one­
dimensional cases such as this, it is always the case that v = w = 1. 
FromJ~/1 (x1,x2) = p11 (x1,x2), where 

we calculate 

so that 

1 - exp(-c-~) 
( ) z~+~ 

P11 X1,X2 = --------asX2 + ar, 
X1 

and 
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It follows that a forward-stable bifurcation of endemic equilibria occurs 
at R0 = 1. 

See Figure 4.4 for simulation examples that illustrate this bifurca­
tion result. □ 

Example 4.9. Consider the SAIR model (4.13) in Example 4.3.3. We 
saw there that the disease-free equilibrium (4.14) 

X3 = ~(-b--1) _b __ l>O, 
e C 1-CTs ' 1-CTs 

destabilizes as R0 , given by formula ( 4.17), increases through 1. To deter­
mine whether the resulting bifurcation of endemic equilibria is forward 
(hence stable) or backward (hence unstable) by an application of Theo­
rem 4.7, we calculate the sign oh given by formulas (4.20)-(4.8). Some 
lengthy calculations show that from the components 

1 ( C1X1 +CzXz) -exp-~~~ 
Pn = p CT5X3C1 +crA(I-pA), 

C1X1 + C2X2 

1 ( C]X] +czXz) -exp-~~~ 
P - p CTXC 

12 - C1X1 +C2X2 s 3 2, 

P21 = CTAPA, and 

P22=CT1(l-PJ) 

of the 2 x 2 Jacobian matrix J~l1 (xi, x2 ) = [Pij (xi, x2) ], we obtain the 
gradients 

o 1 C1 [ C1 + 2 ] ' o C1 [ 0 ] ' Vx1P11 = -2CTs X3 c2 + 2 Vx2P11 = -CTs X3 1 

o 1 Cz [ C1 + 2 ] ' o C2 [ 0 ] ' Vx1P12 = -2CTs X3 c2 + 2 
Vx2P12 = -CTs- 1 X3 

v~1 P21 = v~2 P21 = o, and 

vtv22 = vtv22 = o 
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(A) R 0 = 0.984 

00000000000 

X3=S 

X2 =I 
OOQoQoQoQoQ 

0 2 4 6 8 10 490 492 494 496 498 500 

time 
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{B) R0 = 1967 

00000000000 

x2 =1 
00000000000 

I I I I i I 
0 2 4 6 8 10 490 492 494 496 49& 501] 

time 

Figure 4.5. Time series plots of the x1 (t) and X3 (t) components of 
sample solutions of the SAIR model equations ( 4.13) with parameter 
values 0-5 = 0.9, a-A = 0.95, O"J = 0.8, a-R = 0.5, PA = 0.9, PI = 0.9, 
PR = 0.5, b = l, and c = 1.5 and initial conditions x1 (0) = 0.5, 
x2 (0) = 0, x3 (0) = 2, and x4 (0) = 0. (A) With forces of infection 
c1 = c2 = 0.5, the reproduction number satisfies R0 < l, and the 
disease-free equilibrium Xe = col(0, 0, 6, 0) is stable. (B) With forces 
of infection c1 = c2 = l, the reproduction number satisfies Ro > l, 
and the disease-free equilibrium Xe = col(0, 6) is unstable. In this 
case, we see that the solution approaches an endemic equilibrium 
Xe = col(0.707, 0.657, 3.197, 0.861). 

to be used in formula (4.8). Finally from (4.15), we calculate the 2 x 2 
Jacobian matrices 

o ( ) [ -asc1 -asc2 ] lx1 f2 Om,X2e = O O and 

J~2 f2 (Om, 0) = [ ~ ~ ] · 

These ingredients in (4.8) give us the matrix 

[Kij] = ~a/c1 + 2) v\+ (c2 + 2) v2 [ 
3e 

Since this 2 x 2 matrix has no positive entries, it follows that K = 
-WT [Kij]v > 0. 

By Theorem 4. 7, a forward bifurcation of (locally 
asymptotically) stable endemic equilibria bifurcate 
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from the disease-free equilibrium as R0 increases 
through 1. 
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See Figure 4.5 for simulation examples that illustrate this bifurca-
tion result. □ 

4.5. Applications 

The two applications in this section illustrate the disease modeling 
methodology and analysis studied in this chapter. The first application 
considers a vaccination program in the basic SI and SIR models and the 
notion of herd immunity. The second application concerns a model of 
a specific disease, namely malaria. 

4.5.1. Vaccinations and Herd Immunity. An infection that invades 
a susceptible population at a low level will not succeed in establishing 
itself permanently in the population if the disease-free equilibrium is 
(locally asymptotically) stable (i.e., if R0 < 1). However, if R0 > 1, then 
one can consider implementing procedures designed to reduce R0 with 
the goal of attaining R0 < 1 and a stable disease-free equilibrium. These 
include vaccination programs, quarantine protocols, cleaning and steril­
ization procedures, pathogen vector control (such as insecticides), social 
behavior modification (such as masking and social distancing), and so 
on. In this section, we look at the use of vaccination programs to reduce 
R0 in the basic SI and SIR models introduced in this chapter. 

4.5.1.1. SI Model. In Section 4.3.1, we saw that SI model 

(4.23) 
X1 (t + 1) = ( 1 - exp(-ci ;c;?)) CJsX2 (t) + CJ1X1 (t) 

x 2(t+ 1) = bl+c~z(t)x2(t)+exp(-c/P~;?)CJsX2(t) 

has the disease-free equilibrium 

and that the reproduction number is 

b 
-->1, 
1- CJs 
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Assume that R0 > 1 so that (by Theorem 4.4) the disease-free equilib­
rium is unstable. (By Theorem 4.7, there are stable endemic equilibria, 
at least for R0 ~ L) 

Assume that a vaccination program is put in place and succeeds in 
accomplishing the following: at any given time t, a fraction v of the sus­
ceptibles x2 (t) are vaccinated (during the interval t tot+ 1) and become 
immune to the disease at time t + 1. Thus, (1 - v) x2 (t) susceptibles 
remain at time t + 1 (if they survive). This assumption replaces the sur­
vival probability CJ s in the model equations ( 4.23) by (1 - v) CJ s, which 
now become 

x1 (t + 1) = ( 1 - exp(-ci x;(;;)) (1 - v) CJsX2 (t) + CJ1X1 (t) and 

x 2 (t + 1) = b 1+c~2(t)x2 (t) + exp(-c/;c;?) (1 - v) CJsX2 (t), 

and the disease-free equilibrium becomes 

[ 0 l Xe= 1 b l , 
-;: ( 1-(1-v)as - ) 

b 
( ) > 1. 1- 1-v CJs 

We could recalculate R0 for this vaccination model, but it is easier simply 
to note that the calculations are the same as those in Section 4.3.2 with 
CJs replaced by (1- v)CJs. Consequently, we can use formula (4.12) to 
obtain the reproduction number 

1 
Ro (v) = ci (1- v)CJs-1--, - CJJ 

which is now a function of the vaccination fraction v. Note that 

(4.24) 

where 

(4.25) 

R0 (v) = (1- v)R0 (0), 

is the reproduction number in the absence of the vaccination program. 
The question is this, If the fraction vis sufficiently high (close to 1), will 
an epidemic be avoided? And if so, what is the vaccination threshold? 

From formula (4.25), we find that R0 (v) < 1, and 
the disease-free equilibrium is stable if the vaccination 
fraction satisfies 

1 
V > Vo := l - Ro (0)" 
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If this threshold for the fraction of vaccinated individuals is met, it is 
said that the population has herd immunity. Note that the vaccina­
tion threshold v0 can be calculated by this formula from a knowledge of 
R0 = R0 (0) in the absence of the vaccination program. See Table 4.1 for 
examples. 

Table 4.1. (Data from Wikipedia: https: //en. wikipedia. org/ 
wiki/Basic_reproduction_number. Text is available under the 
Creative Commons Attribution-ShareAlike License 4.0, additional 
terms may apply.) 

Estimated Estimated% 
Disease Estimated R0 1 Needed for 

Vo= 1- -
Ro Herd Immunity 

Measles 12-18 11 1/ 92 - 94% ---

Chickenpox 10-12 ¼' H 90 - 92% ---
1c9 H Mumps 10-12 --- 90 - 92% 

Rubella 6-7 
1~ F 83 - 86% 

Polio 5-7 a i 80 - 86% 
5 7 

Covid-19 
3-8 2 7 67 - 88% 

(variants) 3 - s 
Pertussis 5-6 4 5 80 - 83% - - -
Smallpox 3.5-6 ~ g 

71- 83% 
7 6 

Covid-19 
2.4- 3.4 7 12 58 - 71% 

(wild type) 12 17 

HIV/AIDS 2-5 1 4 50 - 80% - - -
SARS 2-4 1 ~ 50 - 75% 

1 4 

Common cold 2-3 2 50 - 67% 

Diphtheria 1.7-4.3 l ~3 41- 77% 
17 ;j:3 

Ebola 1.4 - 1.8 2 29 -44% - - -

i 9 

Influenza 1.2 - 1.4 2 17 - 29% 6-7 
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4.5.1.2. SIR Model. Consider the SIR model in Section 4.3.2 but with 
permanent acquired immunity (i.e., with PR = O): 

(a) x1 (t + 1) = ( 1- exp(-ci ;(;;))) CJsX2 (t) 

+CJJ (1 - P1) X1 (t); 
(4.26) 

1 
(b) Xz (t + 1) = bl+c;(x2(t)+x3 (t)) (X2 (t) + X3 (t)) 

+ exp(-ci ; 1(;;) CJ 5x2 (t); 

(c) xit + 1) = CJ1P1X1 (t) + (JRX3(t). 

In Section 4.3.2, it is shown that this model has the disease-free equilib­
rium 

X = [ ~:: l = [ 2_ (_;_ - 1) l e c, l-as ' 
X3e 0 

and that 
1 

Ro=CiCJsl (l ). - (JI - PI 

b 
-->l 
1 - CJs , 

If we assume, as in the SI model in Section 4.5.1.1, that a fraction v of 
susceptibles becomes immune to the disease by implementation of a vac­
cination program, then we have the modified SIR model equations 

(a) x1 (t + 1) = ( 1- exp(-ci ;c;;)) (1- v) CJsX2 (t) 

+CJI (1 - PI) X1 (t); 
1 

(4.27) (b) Xz (t + 1) = bl+c(x2(t)+x3(t)) (X2 (t) + X3 (t)) 

+ exp(-ci x;c;?) (1- v) CJsX2 (t); 

(c) xit + 1) = CJIPIX1 (t) + VCJsX2 (t) + (JRXit). 

Note that the vaccinated individuals vx2 are placed in the recovered class 
x3 (if they survive). The recovered class in this model consists of individ­
uals who have immunity by one of two means: those p1x1 with acquired 
immunity (i.e., who had and recovered from the disease) and those vx2 

who have been vaccinated. 

It is left as Exercise 4.16 to show that the disease-free equilibrium is 

(4.28) x = ! 1 (b - (1 - aR) 1 - (l - u) as) [ ~ 
" c 1 - (1 - u) O's 1 - aR + VO's v~ 

1-aR l 
To calculate the reproduction number, we identify from equation 
( 4.27)(a) that 
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where 

From formulas (4.6), we get the 1 x 1 Jacobian matrices 

1 -CJR 
F(0,x2e)=ci 1 (l-v)cr5 and 

- CJR + VCJ5 

T(0,X2e) = CJ1 (1- P1), 

and from formula (4.7), 

R0 (v)=c- l-crR (l-v)cr5 
1 

1 1-crR+vcr5 l-cr1 (1-p1)' 
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Here we have indicated that the reproduction number R0 (v) depends on 
the fraction v of the population that is vaccinated. Note that 

1- CJR 
Ro ( v) = l ( 1 - v) Ro ( 0) , 

- CJR + VCJ5 

where 
1 

Ro (0) = cia s 1 (l ) 
- 0'1 - PI 

is the reproduction number if the population is unvaccinated. 

Suppose the disease-free equilibrium is unstable if the population 
is unvaccinated (i.e., suppose R0 (0) > 1). Can the disease-free equilib­
rium be stabilized (and an epidemic avoided) by vaccination? And if so, 
what level of vaccination will suffice? The answer is that the vaccination 
fraction will accomplish this if R 0 (v) < 1, which occurs when 

(4.29) 

We conclude from this model the following. Suppose 
the unvaccinated population is threatened with an epi­
demic because R0 (0) > 1, and therefore, the disease­
free equilibrium is unstable. The vaccinated popula­
tion can avoid an epidemic (i.e., R0 (v) < 1 will be sat­
isfied) provided the vaccination fraction v exceeds the 
threshold v0 given by formula ( 4.29). 



192 4. Disease and Epidemic Models 

If we rewrite the vaccination threshold as 

then since 

Vo== 1 + ~-1- ( 1- R/(o)), 
1-aR Ro(O) 

1 
----1~<1, 
1 + ~ --

1-aR R0(0) 

we see that the threshold v > v0 is met if 

1 
V > 1- Ro (O)' 

Thus, the criterion for herd immunity in the SI model is sufficient, but 
not necessary, to attain herd immunity in the SIR model. 

4.5.2. A Malaria Model. The examples in this chapter have not fo­
cussed on any specific disease but instead on low-dimensional general 
models. This is done in order to emphasize the modeling methodology, 
analytic techniques, and concepts. We close this chapter with a model 
that is focused on a specific disease, namely malaria. It is a discrete time 
analog of the ordinary differential equation model studied in [17], [18], 
[19]. We will direct our attention here solely to the formulation of the 
model equations and the calculation of R0 for this rather complicated 
model. 

Mosquitoes are considered the most deadly animal in the world to 
humans [86]. Malaria is the most lethal of many mosquito-borne dis­
eases, which also include dengue, zika, yellow fever, West Nile virus, 
chikungunya, and equine encephalitis. Malaria is caused by one of sev­
eral species of protozoan parasites from the genus Plasmodium. The par­
asite is transmitted to a human by the bite of an infected female mosquito 
of the genus Anopheles. After passing through developmental life cy­
cle stages in the human liver, the parasite is transmitted (in the form 
of gametocytes) back to a mosquito when it bites an infected human. 
After the parasite passes through more life stages in the mosquito, the 
mosquito becomes infectious and capable of repeating the cycle by biting 
a susceptible human. Thus, the disease is spread in humans not by di­
rect contact with the pathogen but by contact with an infected mosquito, 
which is called a vector for the disease. So our model will account for the 
dynamics and interactions of both human and mosquito populations. 
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Because of the latency periods associated with the developmental 
stages of the parasite, we structure both populations into three classes: 
susceptibles S, exposed E (infected but not infectious), and infectious 
I. Humans can recover from malaria, but recovered individuals still 
have low levels of parasites and can infect mosquitoes. After some time, 
recovered individuals revert to the susceptible class. Mosquitoes, on the 
other hand, remain infectious for life. For these reasons, we create a 
recovered class R for humans but not for mosquitoes. The model for the 
human population is called an SEIR model, and that for the mosquito 
population is called an SEI model. A common notational procedure 
is to list the model equations for these classes in the order of passage 
for individuals and refer to them as SEIR and SIR models, respectively. 
However, in keeping with our notation for the calculation of R0 , in 
which infected classes are listed first, we write the state variables in the 
order 

X1 Eh 
X2 Em 
X3 h 

x= X4 Im 
X5 Sh 
x6 Sm 
X7 R 

where a subscript h indicates humans and a subscript m indicates 
mosquitoes. Using the same modeling methodology used throughout 
this chapter, we construct the following equations for the components 
ofx = x(t) (see graph in Figure 4.6): 

Eh (t + 1) = (1- 9)h (x(t)))O'shSh (t) 
+ (1 - VEh) O'EhEh (t), 

Em (t + 1) = (1 - q:im (x (t))) CJ' smSm (t) 
+ (1 - VEm) O'EmEm (t) 

Ih (t + 1) = VEh()EhEh (t) + (1- VJh) O'Jhh (t), 
(4.3o) Im (t + 1) = VEmO'EmEm (t) + O'Jmim (t), 

Sh(t+l)=bh 1 
1 (t)Ph(t)+vRhO'RhRh(t) 

+Ch/Jh 

+q:?h (x (t)) CJ' ShS h (t), 
1 

Sm (t + 1) = bm l+cm/JmU) Pm (t) + q:?m (x(t)) CJ' smSm (t), and 
Rh (t + 1) = VJhO'Jhih (t) + (1 - VRh) O'RhRh (t). 
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Figure 4.6. The flow diagram for the malaria model (4.30). The 
dashed lines indicate interactions between humans (top row) and 
mosquitoes (bottom row). 

The time unit is one day. The r:J coefficients denote survival prob­
abilities for the class indicated by their subscripts in (4.30), and the v 
denote the probability of a transition between classes as indicated their 
subscripts; see Table 4.2. 

What remains for the specification of the model are the infection 
escape functions <ph and (/)m• For this purpose, we again use decreasing 
exponential functions 

where 

are total population sizes of humans and mosquitoes, respectively. In 
this model, the coefficients oh and om in the escape functions are re­
lated to the number of bites per human per mosquito per day, as given in 
[18], by 

oh:= f3h (Ph, Pm) ihm and 

Om == f3m (Ph, Pm) imh, 
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where 

Thus, 

cpdx (t)) = exp(-f3h (Ph, Pm) ihm ;: ) and 

(/)m (x (t)) = exp (-f3m (ph, Pm) imh ;: ) 

in (4.30). The interpretation of the coefficients in these expressions ap­
pear in Table 4.2. 

Note that the disease-free equations for the susceptibles Sh (t) and 
Sm (t) (obtained by setting Eh, Em, Ih, Im, and Rh identically equal to O) 
are the two, uncoupled one-dimensional difference equations 

Table 4.2. Parameters for the Malaria Model ( 4.30) 

Survival Probabilities 
ash susceptible human 
asm susceptible mosquito 
aEh exposed human 
a Em exposed mosquito 
a1h infectious human 
a1m infectious mosquito 
aRh recovered human 

Logistic Growth Coefficients 
bh, bm birth rates 
ch, Cm density coefficients 

Transition and Infection Probabilities 
vEh exposed human becomes infectious 
vEm exposed mosquito becomes infectious 
v1h infectious human recovers 
vRh recovered human becomes susceptible 
imh mosquito is infected by biting a human 
ihm human is infected by a mosquito bite 

Biting Rates 
f3h average bites a human receives per day 
f3m average bites a mosquito gives per day 
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for the human and mosquito populations. We can analyze both of these 
equations using the methods of Chapter 1 to find 

0 if~<l 
lim Sh(t) = ! -ash and 
t---.oo S :- 2_ ( _.£[l__ - 1) if~>l he - ch l-ash -ash 

0 if~< 1 
lim Sm (t) = ! -asm 

t---.oo S == _!._ ( ~ - 1) if~>l me Cm l-asm -asm 

for all positive initial conditions Sh (0) > 0 and Sm (0) > 0. We proceed 
under the assumption that both populations survive in the absence of 
the parasite, that is to say that 

bh > 1 and 
1 - (J Sh 

The model equations in (4.30) have the general epidemic model for­
mat (4.1) with 

where 

with 

f, (xi, x,) = [ 
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and with 

and 

s(x1,x,) = l 
This model has the disease-free equilibrium 

0 0 
0 0 
0 0 

Xe= 0 0 

Xse She 

X6e Sme 

0 0 

which by Theorem 4.4, destabilizes as R0 increases through 1. 

To calculate the reproduction number R0 using the method in Sec­
tion 4.2, we calculate (using formulas (4.6)) the Jacobian matrices 

F(Om,X,e) = r 
0 0 0 Shef3hmashf3h(She ,Sme) 

Sme 

0 0 Sme/3mhasm/3m(She,Sme) 0 
She 

0 0 0 0 
0 0 0 0 

and 

Il 
and the next generation matrix 
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where N is the matrix 

She f3hmashVEm0Emf3h(She,Sme) l 
Sme (l-(l-VEm)aEml(l-arm) 

0 

and the asterisk denotes an unneeded block submatrix. The eigenvalues 
of this next generation matrix are O (with multiplicity 2) and those of N, 

which are ±✓ R0hRom, where 

(4.31) (1 - (1 - VEh) (TEI:\) (1 - (1 - Vrh) CTrh) 
/3 hmCT Sm VEm CTEmPm (She, Sme) 
(1 - (1 - VEm) CT Em) (1 - CT1m). 

and 

It follows that 

(4.32) 

Note that 

Roh =[bites per human per unit time] 

x [probability of human-to-mosquito transmission] 

x [expected time a human is infectious] 

= [ average number of mosquitoes infected ] 
by humans per unit time 

x [expected time a human is infectious] 

= [ average number of mosquitoes infected ] 
by a human per lifetime ' 

and similarly, Rom is the average number of humans infected by a 
mosquito per lifetime. 

The reproduction number R0 that determines the sta­
bility of the disease-free equilibrium in the malaria 
model (4.30) is the geometric mean (4.32) of the two 
averages Roh and Rom given by formulas (4.31). 

More analysis of the continuous time version of the malaria model ( 4. 30) 
can be found in [18], [19]. 
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4.6. Concluding Remarks 

In this chapter, we consider an important type of structured population 
model in which individuals are classified according to various disease­
related stages. The focus was on the modeling methodology and the sta­
bility properties of a disease-free equilibrium (i.e., an equilibrium of a 
model in which there a no individuals infected with the pathogen). We 
describe a general procedure for calculating the famous quantity R0 (the 
inherent reproduction number) associated with a specific disease-free 
equilibrium. The disease-free equilibrium destabilizes as R0 increases 
through 1, and this destabilization results in the creation of endemic 
equilibrium (i.e., equilibria in which the infected class is not empty). 
This basic (transcritical) bifurcation is analogous to that for matrix mod­
els considered in Chapter 3 except that the bifurcation is not of survival 
equilibria from a population extinction equilibrium but of endemic equi­
libria from a disease-free equilibrium. 

To protect the population from an epidemic, a focus is placed on 
attaining R0 < 1. It should be remembered, however, that the stability 
analysis in Theorem 4.4 only guarantees the local stability for initial con­
ditions near the disease-free equilibrium (i.e., for populations near the 
disease-free equilibrium that are invaded by a small number of diseased 
individuals). While this might indeed be appropriate for many cases, for 
other circumstances, R0 < 1 might not guarantee the asymptotic elimi­
nation of the disease. A global analysis of the existence and stability of 
endemic equilibria is needed for such a conclusion. 

4. 7. Exercises 

Exercise 4.10. Assume the disease-free equation in the SI model of Ex­
ample 4.2 and Section 4.3.1 is the Ricker equation 

x1 (t + 1) = bx (t) exp(-cx (t)) 

instead of the discrete logistic equation. Calculate R0 and apply Theo­
rems 4.4 and 4. 7. 

Exercise 4.11. Prove (4.24) still holds for the vaccination modified SI 
model (4.23) with a general escape function cp (xif p) with cp (0) = 1 and 
cp' (0) < 0. 
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Exercise 4.12. Show that the disease-free equilibrium x2e of the SAIR 
model in Section 4.3.3 satisfies Assumption 4.1. 

Exercise 4.13. Consider an extension of the SAIR model in Example 
4.3.3 in which asymptomatic individuals can also recover and move the 
recovered class x4 with a certain probability. Modify the cycle graph in 
Figure 4.3 to include this possibility. Calculate R0 and apply Theorems 
4.4 and 4.7. 

Exercise 4.14. Consider an extension of the SAIR model in Example 
4.3.3 in which infected susceptibles can be either asymptomatic or symp­
tomatic. Modify the cycle graph in Figure 4.3 to include this possibility. 
Calculate R0 and apply Theorems 4.4 and 4.7. 

Exercise 4.15. Consider an extension of the SAIR model in Example 
4.3.3 that includes both added features in Exercises 4.13 and 4.14. Mod­
ify the cycle graph in Figure 4.3 to include this possibility. Calculate R0 

and apply Theorems 4.4 and 4. 7. 

Exercise 4.16. Derive the formula ( 4.28) for the disease-free equilib­
rium of the vaccination SIR model in Section 4.5.1.2. Also, check the 
formula by substitution into the disease-free equilibrium equations. 



Chapter 5 

Darwinian Dynamics 

In the models considered in Chapters 1-4, the coefficients appearing in 
the equations remain constant in time. These coefficients describe var­
ious biological and environmental parameters that, except in extraordi­
nary circumstances (such as in controlled laboratory experiments), will 
in fact not likely remain constant but suffer changes and fluctuations for 
any number ofreasons. Changing physical and biological environments 
can change vital rates such as those associated with reproduction, sur­
vival, resource consumption, and growth rates, to name a few. The mod­
els in Chapters 1-4 can be adapted to take into account coefficients that 
are not constant in time, and to do so leads to new types of mathemati­
cal equations that present new challenges. For example, if the changes 
are due to regular periodic fluctuations in the environment ( e.g., daily 
or seasonal variations), one can model the dynamics by using periodic 
coefficients in a model equation, resulting in a type of nonautonomous 
equation called a periodically forced equation. In other circumstances, 
the environment might shift from one state to another over time-a sit­
uation that could be modeled by equations with coefficients that asymp­
totically move from one set of values to another-resulting in what are 
called asymptotically autonomous equations. Yet another situation oc­
curs when environmental fluctuations are random and the model coef­
ficients become random variables, which leads to stochastic difference 
equations. 

201 
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In this chapter, we consider the case when model coefficients change 
due to the Darwinian principles of natural selection. In Sections 5.1, 5.2, 
and 5.3, we study the modeling methodology of so-called trait (strat­
egy) driven evolution [129]. The model equations are derived from a 
selected population model (as found in Chapters 1 and 3) and modified 
by prescribing how one or more coefficients in the model depend on a 
phenotypic trait that is subject to evolution, which is supplemented by 
an equation for the dynamics of the population's mean trait. These equa­
tions, which couple the population/ecological dynamics with the evolu­
tionary dynamics, constitute a Darwinian version of the original popula­
tion equation. We show in Sections 5.2 and 5.3 how the basic bifurcation 
phenomena of survival equilibria from a destabilized extinction equilib­
rium that occurs for nonevolutionary models (Chapter 3) also occurs for 
Darwinian evolutionary models. That is to say, our starting point is to 
consider the problem of extinction versus survival by studying the sta­
bility properties of extinction states (Section 5.2) and then the creation 
of survival (positive) equilibria by bifurcation when an extinction state 
destabilizes (Section 5.3). 

The Darwinian models studied in Sections 5.1-5.3 track the evolu­
tionary change of the mean trait as it occurs within a single population. 
Another means of evolutionary change is invasion driven evolution 
[129]. This evolutionary change occurs when a(reproductively separate) 
mutant population with a different mean trait displaces a resident pop­
ulation [129]. This concept leads to the notion of an ESS trait, which we 
briefly study in Section 5.4. 

We conclude this chapter with several applications that not only il­
lustrate these methods and results but address some fundamental bio­
logical questions that have interested researchers both historically and 
recently (Section 5.6). 

5.1. Modeling Methodology 

Return, for the moment, to the lowest-dimensional (m = 1) matrix equa­
tion (1.11) considered in Chapter 1: 

(5.1) 

with 

(5.2) 

x (t + 1) = r (x (t)) x (t) 

r (x) == b0 /3 (x) + s0 u (x) 
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and 

/3(0) = cr(0) = 1. 

Recall that b0 and s0 are inherent (density-free) per capita fertility and 
survival rates, i.e., the fertility and survival rates of each individual in 
the population (all of whom in such models are considered identical) in 
the absence of interactions with other individuals in the population. We 
now want to consider the case when all individuals do not have the same 
inherent vital rates. 

We assume that individuals differ with regard to some (phenotypic) 
trait that determines their vital rates b0 and s0 and that this trait is subject 
to the axioms of natural selection (variability, heritability, and differen­
tial fitness). This trait can be a physiological characteristic that affects 
the individual's ability to produce viable offspring and survive (for exam­
ple, by affecting its ability to gather food resources, establish and defend 
territories, find mates, or resist diseases), a behavioral trait (for example, 
how aggressively it competes or cooperates with other individuals for re­
sources and mates), a metabolic trait (for example, the ability to utilize 
certain food resources or a growth or maturation rate), etc. To begin, we 
consider a model in which there is only one such trait, which we denote 
by v, and assume b0 = b0 (v) and s0 = s0 (v). 

When interactions among individuals occur, the density-dependent 
fertility and survival factors /3 (x) and er (x) that affect an individual's fer­
tility and survival depend not only on the individual's inherited trait v 
but can also depend on the traits of other individuals with whom it inter­
acts. For example, if the trait is body size, then in a contentious competi­
tion for a resource, the competitive ability of an individual could depend 
on its size relative to that of its competitors. In the modeling methodol­
ogy considered here, the comparison is made between the individual's 
trait v and that of the typical individual, by which we mean an individ­
ual whose trait equals the population's mean trait, denoted by u. Thus, 
we allow f3 and er to depend on both v and u and write 

(5.3) r(x, v, u) == b0 (v) f3 (x, v, u) + s0 (v) cr(x, v, u) and 

f3 (0, v, u) = cr(0, v, u) = 1. 

The latter normalization assumptions insure that b0 ( v) and s0 ( v) retain 
their interpretations as the inherent (density-free) fertility and survival 
rates. If x = x (t) and u = u (t) change over time and Xv (t) denotes 
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the subpopulation of those individuals with trait v, then the population 
dynamics of this subpopulation are governed by the equation 

(5.4) Xv (t + l) = r (x (t), V, u (t)) Xv (t). 

The method of Darwinian dynamics (evolutionary game theory) follows 
the dynamics of the entire population x = x (t) with its mean trait u = 
u (t), which are described by equation (5.4) with v = u (t), that is to say 
the equation [129] 

(5.5) X (t + 1) = r (x (t), V, U (t))lv=u(t) X (t). 

What is missing is a model for the dynamics of the mean trait u (t ). 
In Appendix A.4, the reader will find a derivation of the equation 

(5.6) u (t + 1) = u (t) + 8 Ov lnr(x, v, u (t))lv=u(t) 

for the dynamics of the mean trait (for other derivations, see [3], [96], 
[97], [129]). This derivation assumes that evolution does not occur too 
rapidly (often referred to as first order dynamics) and that the trait is at 
all times symmetrically distributed about the mean. 

The coefficient e ~ 0 is the variance of the traits around the mean 
and is constant in first order dynamics (see AppendixA.4); it is called the 
speed of evolution. Note that if e = o (i.e., if there is no trait variabil­
ity within the population), then no evolution occurs (since in this case 
u (t + 1) = u (t), the mean trait remains fixed atits initialcondition u (0)) 
and the model reduces to a nonevolutionary, one-dimensional popula­
tion equation (5.5) of the type studied in Chapter 1. 

The term ln r(x, v, u) appearing in the trait equation (5.6) is called 
the fitness of the population.1 This equation for u (t), which says that 
the change in the mean trait is proportional to the fitness gradient, goes 
by various names, including the canonical equation of evolution, 
Land e's equation, Fisher's equation ( of additive genetic variance), or the 
breeder's equation. 

In summary, once a modeler has chosen a population model (5.1)­
(5.2) and how r in (5.3)-that is to say, the fitness ln r (x, v, u) of an in­
dividual with trait v when in a population with density x and mean trait 

1The somewhat clumsy notation in equations (5.5) and (5.6) is used so as to ensure that the de­
rivative in the fitness gradient appearing in (5.6) is taken with respect to the individual trait v and not, 
mistakenly. with respect to the population mean trait u. 
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u-depends on v and u, then this methodology (called Darwinian dy­
namics or evolutionary game theory) produces the evolutionary ver­
sion of the population model (5.5)-(5.6). These equations describe the 
(trait driven) evolution of the mean phenotypic as it is coupled with the 
population dynamics of the population. 

An important part of building a Darwinian model are the details of 
how r (x, v, u) (i.e., how the coefficients in the model equations) depend 
on an individual's trait v and/or on the population mean trait u. These 
details reflect the biological assumptions of interest to the modeler. Dif­
ferent assumptions can lead, of course, to very different dynamics and 
hence very different biological punch lines. Often simple assumptions 
that concern the monotonicity properties of a coefficient with respect to 
v and/or u or that a coefficient has a maximum or minimum at certain 
trait values are enough to permit an analysis of the model. This lends a 
level of generality to the analysis and conclusions. Other times, specific 
mathematical formulas for the coefficients (such as exponential func­
tions, rational functions, or Gaussian distributions) are utilized. Here 
are some examples. 

With regard to density-free coefficients (i.e., coefficients appearing 
in r (0, v, u)), it is natural to assume that they do not depend on u but 
can depend on v. The reason for this is that if population density has no 
effect on the coefficient, then neither will the population's mean trait u. 
The (per capita) inherent fertility rate b0 in the general model equation 
(Lll) is a case in point, as is the (per capita) inherent survival rate s0 . 

For example, in the discrete logistic equation (1.17) 

for which 

1 
x (t + 1) = bo l ( / (t) + ex t 

1 
r(x) = b0 -1 -, 

+ex 
we could assume b0 = b0 (v) is dependent on the trait v and then con­
sider specific properties and/ or a specific formula for b0 ( v ). The math­
ematical properties of the function b0 ( v ), as a function of the trait v, de­
pend on the biological and ecological circumstances in which the mod­
eler is interested. For example, one might assume that there exists a trait 
vat which the birth rate is maximal, a specific example of which is 

b ( 
1 (v - v0 )2) 

0 exp -----
2 w ' 
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where v0 is the trait at which the maximum birth rate b0 is attained and 
w > 0 measures the width of the distribution of birth rates as a function 
of v. Note that no scale or reference point for measuring the trait v is 
prescribed, and therefore there is no loss in mathematical generality in 
assuming that the maximal birth rate occurs at trait v0 = O and that 
w = 1: 

(5.7) 

Another example is 
1 

bo-1 z· +v 
Density-dependent coefficients might also depend on v and not u 

(the Darwinian LPA model utilized in [116] is an example). On the other 
hand, since such coefficients involve population density, they might rely 
on u as well as v. An example is the competition coefficient c in the 
discrete logistic for which we then write c = c (v, u). When combined 
with b0 (v ), this classical equation then has per capita growth rate 

1 
r(x,v,u) = b0 (v) 1 ( ) + C V,U X 

from which we can build a Darwinian version of the logistic. The coeffi­
cientc (v, u) accounts for the effect that competition has on an individual 
with trait v in its interaction with other individuals in the population, as 
represented by the most typical individual with trait u. One assumption 
often made is that this effect depends on how different the individual is 
from its competitor (i.e., on the trait difference v - u [129]). Perhaps the 
simplest expression of this assumption is when c (v, u) is a function of 
v - u, which we might write as c (v - u) and assign suitable properties 
to the function c (z) as a function of z. In this case, c0 = c (0) is the com­
petitive intensity experienced by an individual that inherits the mean 
trait v = u. If we are interested in the case when competition becomes 
more severe as competitors become more similar (as Darwin points out 
is often the case [46]), then c(z) would have a maximum of c0 > 0 at 
z = 0. A specific example is 

c(z) = c0 exp(- 2~z2), c0 , w > 0. 

A variation when c0 depends on the population mean is 

c(v, u) = c0 (u)exp(- 2~ (v - u)2 ), w > 0, 
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which is a coefficient (with a normal distribution forc 0 (u)) thatis widely 
used in competition studies (see [129] and the many references cited 
therein). Other types of competition coefficients are of course possible 
when specific ecological scenarios are in mind. For example, mono­
tonicity assumption can be appropriate when considering hierarchical 
competition effects. Consider a forest in which the competitive effect of 
sunlight is a function of tree height v (taller trees shade shorter trees). 
In this case, c (v, u) decreases as a function of v (i.e., for taller trees v in a 
forest with mean tree height u). On the other hand, c (v, u) increases as 
a function of u, as the competitive effect on a tree of height v increases 
as the mean tree height u increases. An example might be 

c(v,u) = w(v)v(u) 

with w (v) and v (u) being decreasing and increasing functions of their 
arguments, respectively; 

c (v, u) = c0 exp(-c1 v) exp(c2u) 

with all ci > 0 is an example, which becomes an example of type 

c(v - u) = c0 exp(-w (v- u)) 

when c1 = c2 == w. 

Clearly, the choice of the submodels for the coefficients will deter­
mine the complexity of the resulting Darwinian model equations and 
of the technical details and formulas involved their analysis. Our goal 
will be to focus on the illustration of the theorems and analytic method­
ologies given in this chapter, and for that tutorial reason, we will restrict 
attention to simpler model coefficients in our choice of illustrative exam­
ples. In fact, we will mostly focus on inherent parameters of Gaussian 
form (5.7) and density coefficients of the form c (v - u). 

Example 5.1. For the discrete logistic equation (1.17) introduced in Ex­
ample 1.4, the per capita population growth rate is 

1 
r(x) = b0 -1--. 

+ex 
Consider a Darwinian version of this equation by replacing the fertility 
rate b0 with 

b0 exp(-~v2). 

That is to say, we assume fertility has a normal distribution with re­
spect to the trait v. We have assumed that this distribution has mean 
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0 and standard deviation equal to 1, which is no loss in generality be­
cause we are free to choose any reference point and scale for v. The 
coefficient c describes the competitive effect of interactions among in­
dividuals, which we now want to consider as a function of an individ­
ual's inherited trait v and of the trait of the typical individual with the 
population mean trait u. A common assumption is that this intraspecific 
competition coefficient is a function of the difference v - u (i.e., depends 
on how different the individual with trait vis from the typical individual 
with trait u). Thus, we replace c by a function c (v - u) and arrive at 

r (x, v, u) = b0 exp(-~v2 ) 1 + c (~ _ u) x· 

Here c (z) is a positive-valued, differentiable function of its argument 
z E R1 . Ifwe set 

Co == C (0) and C1 == azc (0), 

then the Darwinian equations (5.5) and (5.6) become 

(5.8) 
x (t + 1) = b0 exp(-½u2 (t)) l+c~x(t)x (t) and 

U (t + 1) = U (t) + 8 (-u (t) - C1 l+c~x(t)X (t) ). 

As another example, consider a similar Darwinian version of the 
Ricker equation (1.25) with 

r (x, V, u) = boe-v2l2e-c(v-u)x_ 

Equations (5.5) and (5.6) become 

(5.9) 
x(t + 1) = b0 exp(-½u2 (t))exp(-c0 x(t))x(t) 
u(t + 1) = u(t) + 8(-u(t)-c1x(t)) 

We return to this Darwinian Ricker model in Section 5.6.3. 

and 

□ 

For an evolutionary version of the matrix model of the type studied 
in Chapters 2 and 3, that is 

x(t + 1) = P(x(t))x(t), 

the entries of the projection matrixP (x) = [Pij (x) ], as per capita or indi­
vidual rates (birth, survival, stage transition, etc.), are taken as functions 
of v and u, and we write Pij = Pij (x, v, u). The Darwinian dynamics for 
such a matrix model are described by the population and trait equations 

x (t + 1) = P (x (t), V, u (t))lv=u(t) x (t) and 
u (t + 1) = u (t) + 8 av ln p (P (x (t), v, u (t)))lv=u(t)' 

(5.10) 
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where fitness is ln p (P (x, v, u)), which is the logarithm of the spectral 
radius of the projection matrix. The derivation of the trait equation for 
the matrix model is more complicated than that given in Appendix A.4 
for the m = I dimensional model, and we will not give one here; see 
[3], [129]. Note that when m = I, the matrix model (5.10) reduces to 
the model (5.5)-(5.6) since P (x, v, u) = [r (x, v, u)] and p (P (x, v, u)) = 
r(x, v, u). 

Example 5.2. Consider a Darwinian version of the juvenile-adult model 
(3.1) with projection matrix 

(5.11) P(x,v,u)=[ O boexp(-~v2 )l+c(v
1
-u)x2 ]· 

S1 S2 

In this example, an adult's inherent fertility is trait-dependent on its in­
herited trait v and has a normal distribution as a function of v. The 
fertility-dependent factor, describing decreasing fertility with increased 
adult density x2 , has a trait-dependent, intraspecific competition coeffi­
cient c (z), in the same manner as in Example 5.1. Juvenile and adult 
survival, s1 and s2 , are assumed to be density and trait independent. 

The eigenvalues of P (x,v, u) are the roots of its quadratic character­
istic equation 

2 ( 1 2) 1 ,;J, - s2,;J, - s1 b0 exp - -2 v 1 ( ) = 0. + C V - U X2 

The spectral radius (dominant eigenvalue) of P (x, v, u) is 

p (P (x,v, u)) = ½ (,, + 

A straightforward (if tedious) calculation gives 

a 1 ( ( ))I = u(l+c0 x 2 )+c1x2 
v n P p X, V, U v=u 2 

(1 + CoX2) 

-2s1 b0 exp(-½u2 ) 

where 
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From (5.10), we get the Darwinian equations 

[ 
X1 (t + 1) ] [ 0 boexp(-}u2(t)) l [ X1 (t) ] 

- l+coxz(t) 
(5.12) X2 (t + 1) 81 Sz X2 (t) 

u (t + 1) = u (t) + 8 av lnp (P (x(t), V, u (t)))lv=u(t) 

as an evolutionary version of this juvenile-adult model. 

and 

□ 

Example 5.2 illustrates that when m ~ 2, the equations (5.10) for 
the Darwinian matrix model are likely to be quite complicated. This is 
especially true for the trait equation since it is unlikely that an analytic 
formula will be available for the spectral radius of the projection ma­
trix. Despite these difficulties, in Sections 5.2 and 5.3, we will be able 
to develop analytic methods to study the stability properties of extinc­
tion equilibria and the resulting bifurcation of survival equilibria (as in 
Chapter 3 for nonevolutionary models). 

We begin with the domain and smoothness properties required of 
the entries in projection matrix P(x,v, u) = [Pij (x,v, u)], which we will 
assume are enforced throughout this chapter. 

Assumption 5.3. pij E C2 (Rm x Ax A : R+), where A is an open 
interval in R1. The projection matrix P (x, v, u) = [Pij (x,v, u)] is irre­
ducible for each (x, v, u) E R';.1 x Ax A, and for all u, v EA and i, j, the 
entry Pij (Om, v, u) is independent of u, that is 

(5.13) auPij (Om, v, u) = 0. 

The equation (5.13) implies that the projection matrix P (Om, v, u), 
and hence its spectral radius p (P (x, v, u)), are independent of u. This in 
turn implies the inherent fitness lnp (P (Om, v, u)) is independent of u, 
that is 

(5.14) au In p (P (Om, v, u)) = 0 for all v, u EA. 

As always, the first step in the analysis of a dynamic model is to deal 
with the existence of equilibrium solutions and then their local stability 
properties, as determined by the Linearization Principle. In population 
models, such as those in Chapters 1, 2, and 3, extinction equilibria play 
a fundamental role since they relate to the basic biological question of 
extinction versus survival. In this section, we consider extinction equi­
libria for the (single trait) Darwinian version of a nonlinear matrix model 
(5.10). 
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The equilibrium equations associated with (5.10) are 

x= P(x,v,u)lv=ux and 

0 = e av lnp (P (x, v, u))lv=u, 

which if evolution occurs (i.e., e > 0), are equivalent to 

x= P(x,v,u)lv=ux and 
0 = 8vP (P (x, V, u))lv=u· 

(5.15) 

211 

Definition 5.4. A survival equilibrium of the Darwinian model ( 5.10) 
is a pair 

(5.16) 

with Xe -:j:. Om that solves the equations (5.15). If Xe = Om, then the 
equilibrium is called an extinction equilibrium. Ifxe E int (Rr;!), then 
it is called a positive equilibrium. 

Since by assumption P(x, v, u)lv=u is nonnegative and irreducible, 
Perron-Frobenius theory implies that it has a simple, positive dominant 
eigenvalue with a positive eigenvector and that no other eigenvalue has a 
nonnegative eigenvector. It follows from the first equilibrium equation 
that 1 is an eigenvalue of P (xe, v, Ue)lv=ue associated with eigenvector 
Xe E R~, and as a result, Xe E int (R~) is a positive equilibrium. 

Example S.S. The equilibrium equations associated with the Darwinian 
discrete logistic model (5.8) are (after a cancellation of 8) 

x = b0 exp(-~u2 ) i+~oxx and 
1 

O = -u+c1--x l+c0 x 

from which we find, given any b0 > 0, that there is only extinction equi­
librium, namely 

To find positive equilibria, we need to solve these algebraic equations 
for x > 0. After a cancellation of the factor x in the first equation, the 
equations for a positive equilibrium are 

1 = b0 exp(-!u2)-1 - and 2 l+c0 x 
1 

0 = -U + C1 -1+ X. 
CoX 
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Unfortunately, we cannot solve these equations analytically to obtain 
formulas for positive equilibria. (This is not unusual for Darwinian mod­
els.) However, we can argue that there exists a unique positive equilib­
rium for each b0 > 1 ( and that there are no positive equilibria for b0 :::; 1) 
as follows. Solve the second equation for 

1 
U = C1 l X + CoX 

and substitute this into the first equation to obtain the equation 

1 2( 1 )
2 1 1 = b e-2C1 l+CoXX 

o 1 + CoX 

to be solve for x > 0. While we cannot do this analytically, we can easily 
solve for b0 as a function of x and take the approach used in Chapter 1. 
The right side of the result equation 

(5.17) bo = (1 + CoX) exp( ~Ci ( l /co XX r) 
is easily shown to be a monotonically increasing function of x ~ 0 which 
equals 1 when x = 0 and approaches +oo as x ➔ +oo. Thus, the range 
of this function is 1 :::; b0 < +oo. From this, we see that for any b0 :::; 1 
there is no solution x > 0 of the equilibrium equation but that for each 
b0 > 1 there is exactly one solution x = Xe (b0 ) > 0. We conclude that 
for each b0 > 1 there exists a unique positive equilibrium 

[ : ] = [ C11+co1:(~;~e (bo) ] ' 

where x = Xe (b0 ) satisfies equation (5.17). □ 

Example 5.6. The equilibrium equations associated with the Darwinian 
juvenile-adult model (5.12) are 

[ X1 ] = [ 0 bo exp(-~u2
) 1+:0 x2 ] [ X1 ] and 

X2 S1 S2 X2 

0 = 2u (1 + CoX2) + C1X2, 

There exists an extinction equilibrium x = 02 if and only if u is a root of 
the second equation with x2 = 0 (i.e., u = 0). Thus, the only extinction 
equilibrium is col(x,u) = col(O2,0). 
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It is not possible to calculate a formula for survival equilibria, but 
we can prove that there exists no survival equilibrium if R0 < 1, where 

and that there exist unique positive equilibrium for each R0 > 1. We can 
do this as follows. If we solve the last two of the equilibrium equations 

( 1 2) 1 x1 = b0 exp --2u 1 x2 , 
+ CoX2 

x2 = s1x1 + s2x2 , and 

0 = 2u (1 + CoX2) + C1X2 

for 

respectivaly, and place these in the first equation, then the result is an 
equation for x2 . After some algebraic manipulations, this equation is 

Note that the left side is an increasing (linear) function, while the right 
side is a decreasing function of x2 > 0. Thus, we see geometrically that 
the graphs of these two positive functions will intersect (exactly once) at 
a value of x2 > 0 if and only if the right side is larger than the left side 
when x2 = 0 (i.e., if and only if R0 > 1). □ 

In this section, we have restricted our modeling efforts to a single 
trait subject to evolutionary change. To include multiple traits involves 
utilizing a vector of n mean traits u = col(ui) and an extension of the trait 
equation to describe its dynamics. The equations take the form [129] 

X (t + 1) = P (x (t), V, U (t))lv=u(t) X (t) and 
U (t + 1) = U (t) + 0 Ov lnp (P (x(t), V, U (t)))lv=u(t)' 

where 0 is an n x n variance/covariance matrix. While the theorems 
and results in the following sections can be extended to this case, we 
will restrict attention to the single variable n = 1 case. 
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5.2. Extinction Equilibria 

Since x = Om clearly satisfies the first equilibrium equation in (5.15), 

(5.18) 

is an extinction equilibrium if and only if the trait component Uc satisfies 
the equation 

0 = avP (P (Om, v, Uc))lv=Uc. 

We refer to Uc as a critical trait. 

Assuming the existence of a critical trait, we can study the stability 
properties of the associated extinction equilibrium by means of the Lin­
earization Principle. The Jacobian associated with the Darwinian model 
(5.15) when evaluated at an extinction equilibrium is a block diagonal 
matrix 

[ P (Om, V*, uc)lv=uc Om ] 
1 + 8 au ( av In p (P (Om, V, u) )lv=u)lu=Uc 

whose eigenvalues are the eigenvalues of the diagonal blocks ( the aster­
isk denotes an unneeded 1 x m matrix). Making use of (5.14), we have 

au ( av lnp (P (Om, v, u))lv=u) = a~ lnp (P (Om, v, u))lv=u 

+ au av Inp (P (Om, V, u))lv=u 

= a~ lnp (P (Om, V, u))lv=u 

+av aulnp(P(Om,v,u))lv=u 

= a~ lnp (P (Om, v, u))lv=u, 

and the Jacobian becomes 

[ P(Om,V*,Uc)lv=uc Om ] 
1+ea~ lnp(P(Om,v,uc))lv=uc . 

Define the inherent population growth rate (at a critical trait) to be 

ro == p ( P (Om, V, Uc)lv=uJ • 

The Linearization Principle gives the following results. 

Lemma 5.7. Assume Assumption 5.3 holds, that e > 0, and that u = Uc 
is a critical trait. Then the extinction equilibrium (5.18) of the Darwinian 
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model (5.15) is (locally asymptotically) stable if these inequalities hold: 

(a) a~ lnp(P(Om,v,uJ)lv=uc < O; 

(b) -2 < ea~ lnp(P(Om,V,Uc))lv=uc; 
(c) r0 < l. 

If any one of these three inequalities is reversed, the extinction equilibrium 
is unstable. 

Let x (t) = col(x (t), u (t)) E R1J:1 x A be a solution of the Darwinian 
model (5.15). At any time t, the function of v 

lnp (P (x (t), v, u (t))) 

is called the adaptive landscape associated with the model. Note that 
the trait equation in the Darwinian model (5.15) implies that the mean 
trait, at each time, moves in an uphill direction on the landscape at that 
time (note that the landscape is not in general fixed in time as u (t) 
evolves). A critical trait Uc is, by its definition, a critical point v = Uc (in 
the calculus sense) of the adaptive landscape ln p (P (Orn, v, uc)) at the 
extinction equilibrium. The necessary condition (a) in Lemma 5.7 for 
the stability of the associated extinction equilibrium implies that v = Uc 
is located at a local maximum on this adaptive landscape. On the other 
hand, if the inequality (a) is reversed and Uc is located at a local mini­
mum, then the extinction equilibrium is unstable. We return to adaptive 
landscapes in Section 5.4. 

Assuming that inequality (a) holds, we can interpret the necessary 
condition (b) for stability in Lemma 5.7 as a constraint on the speed of 
evolution e. If the speed of evolution is too fast, in the sense that (b) fails 
to hold, then the extinction equilibrium is unstable. 

From Lemma 5.7, we obtain the following result concerning the sta­
bility of an extinction equilibrium as r0 is increased through 1. 

Theorem S.S. Assume Assumption 5.3 holds and that e > 0. Ifu = Uc 
is a critical trait for which Lemma 5. 7(a) and (b) hold when r0 = l, then 
the extinction equilibrium (5.18) associated with Uc loses stability as the 
inherent population growth rate r0 r:::, l increases through l. 

Proof. We need only note that if (a) and (b) hold in Lemma 5. 7 when 
r0 = l, then by continuity they hold for r0 r:::, l. Thus by Lemma 5.7, the 
extinction equilibrium is stable for r0 < l and unstable r0 > l. □ 
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Example 5.9. The Darwinian semelparous discrete logistic model (5.8) 
in Example 5.1, 

x (t + 1) = b0 exp(- ~u2 (t)) l+c~x(t)x (t) 

U (t + 1) = U (t) + 8 (-u (t) - C1 l+c~x(t)X (t) ), 

is associated with the 1 x 1 projection matrix 

(5.19) P(x, v, u) = [ b0 exp(-½v2 ) 1 + c(: _ u)x] 

whose spectral radius is 

p(P(x,v,u)) = b0 exp(-½v2 ) l+c(:-u)x· 

We saw in Example 5.5 that the only critical trait is uc = 0 and that 
the associated extinction equilibrium is x = col(x, u) = col(0, 0) for all 
values of b0 > 0. A calculation shows 

ro = p ( P (Om, V, Uc)lv=uJ = bo 

and 

a~ lnp(P(Om,V,0))lv=O = -1 < 0. 

Thus, (a) and (b) in Lemma 5. 7 hold ife < 2 (i.e., the speed of evolution 
is not too fast), in which case the extinction equilibrium, by Theorem 
5.8, loses stability as b0 increases through 1. On the other hand, if e > 2, 
then the extinction equilibrium is unstable for all values of b0 • □ 

Example 5.10. In Example 5.2, we calculated the spectral radius 

p (P(x,v, u)) = ½ (s2 + s~ + 4s1b0 exp(-½v2 ) 1 + c(vl- u) xJ 

of the 2 x 2 projection matrix (5.11) and used it to construct the Dar­
winian juvenile-adult model (5.12). We saw in Example 5.6 that the only 
critical trait is Uc = 0, which yields the associated extinction equilibrium 
x = col(O2 , 0) for all values of b0 > 0 and 

ro = p (P (Om, v, 0)lv=o) = ½ (s2 + ,J s~ + 4s1bo). 

In order to apply Theorem 5.8, we need to verify conditions (a) and (b) 
in Lemma 5. 7, which involves a calculation of the second derivative 

a~ lnp(P(Om,v,0))lv=O 
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when r0 = l, that is to say when 

b _ l - s2 
o---. 

S1 

The result is 

which shows (a) in Lemma 5. 7 holds. Inequality (b) in Lemma 5. 7 holds 
if 

8 < 2(2-sz), 

and under this condition, we conclude from Theorem 5.8 that the extinc­
tion equilibrium of the Darwinian juvenile-adult model (5.12) loses sta­
bility as r0 increases through 1 (or equivalently, as b0 increases through 
(1 - s2 ) /s1). On the other hand, if e > 2 (2 - s2), then the extinction 
equilibrium is unstable for all values of r0 . □ 

The tedious details in dealing with the first and second derivatives 
of the spectral radius lnp (P (x, v, u)) in making use of Theorem 5.8 can 
be simplified by using R0 , a topic we take up in Section 5.5. 

5.3. A Basic Bifurcation Theorem 

We saw in Chapters 1 and 3 how the destabilization of the extinction 
equilibrium (or a disease-free equilibrium in Chapter 4) gives rise to pos­
itive equilibria (or endemic equilibria in Chapter 4) through a transcrit­
ical bifurcation. It is natural to expect the same is true for Darwinian 
models (5.10). 

If (similar to (3.18) for nonevolutionary matrix models) we define 

(5.20) 

where the superscript "0" now means evaluation at the bifurcation point 
col(x, u) = col(Om, Uc) when r0 = l and wT and v are left and right 
positive eigenvectors of P (Om, v, uc)lv=uc associated with eigenvalue 1, 
then Theorem 5.11 follows from Theorem 3.2 in [37]. 

Theorem 5.11. Assume Assumption 5.3, that e > 0, and that u = Uc is a 
critical trait for which K i=- 0. 
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(a) Equilibria of the Darwinian model (5.10) of the form 

wTv 2 
Xe= -K-(ro - l)v+ O((ro -1)) 

Ue = Uc + 0 (ro - 1). 

bifurcate from theextinctionequilibriumcol(x, u) = col(Om, uc) 
for r0 ~ 1. 

(b) Assume P (Om, v, Uc)lv=uc is primitive. If(a) and (b) in Lemma 
5. 7 hold when r0 = 1, then x > 0 implies that the bifurcating 
equilibria are positive for r0 ~ 1 and are (locally asymptotically) 
stable, in which case we say the bifurcation is forward and sta­
ble. If x < 0, then the bifurcating equilibria are positive for 
r0 ~ 1 and are unstable, in which case we say the bifurcation 
is backward and unstable. 

The following corollary is an immediate consequence of the defini­
tion (5.20) ofx and the positivity of the vectors wand v. 

Corollary 5.12. Assume the conditions in Theorem 5.11 hold. If all par­
tial derivatives at Pij are nonpositive and at least one is negative, then the 
bifurcation of positive equilibria at r0 = 1 is forward and stable. 

Example 5.13. We saw in Example 5.9 that (a) and (b) in Lemma 5.7 
hold at r0 = 1 for the Darwinian semelparous discrete logistic model 
(5.8) when e < 2. Since the single entry in the 1 x 1 projection ma­
trix (5.19) is a (strictly) decreasing function of x > 0, we conclude from 
Corollary 5.12 that when e < 2, there occurs a forward-stable bifurcation 
of positive equilibria as r0 = b0 increases through 1. □ 

The Darwinian juvenile-adult model (5.12) in Example 5.10 pro­
vides an application to a structured population model. 

Example 5.14. We saw in Example 5.10 that (a) and (b) in Lemma 5.7 
hold at r0 = 1 when e < 2 (2 - s2). We note that the projection matrix 
is primitive if s2 > 0. Since the only density-dependent entry in the 
projection matrix (5.11) of the Darwinian juvenile-adult model (5.12) is 
a (strictly) decreasing function of x2 > 0, we conclude from Corollary 
5.12 that there occurs a forward-stable bifurcation of positive equilib­
ria as 

ro = ~ ( Sz + -J s~ + 4s1 bo) 

increases through 1 (or as b0 increases through (1 - s2 ) /s1 ). □ 
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Models with a nonlinear term that increases with increases in low­
level population density (i.e., that have an Allee component) can have 
backward-unstable bifurcations. Here is an example. 

Example 5.15. Suppose we modify the discrete logistic by including an 
Allee component effect that acts on newborn survival. Specifically, we 
use the Allee factor (1.14) with q = land obtain the population growth 
rate 

bl l+ax 
r(x)= l+cx 8 l+sax 

with b, c, a > O and O < s < 1. 

A Darwinian version of the model results from assuming that fertility 

depends on the phenotypic trait and that the competition and Allee co­
efficients c = c (v - u) and a = a (v - u) depend on the trait difference 
to the population mean. This gives 

b ( 1 2 ) 1 1 + a (v - u) x r(x,v,u) = s 0 exp --v -----------. 
2 l+c(v-u)xl+sa(v-u)x 

In this example, we assume the competition and Allee coefficients c (z) 
and a (z) have global maxima at z = 0 so that 

Biologically these assumptions mean that the maximum density effect 
c0 on the fertility of an individual with trait v caused by intraspecific 
competition occurs when v = u (i.e., the individual is like most other 
individuals as represented by the mean) and that the optimal benefit of 
the Allee component a0 , due say to communal protection ofnewborns, is 
provided to a newborn with the most common trait u in the population. 

With these assumptions in the general Darwinian model (5.10), we 
obtain the equations 

( ) _ b ( 1 2 ( )) 1 1 +a0 x(t) ( ) d 
X t + l - S o exp - 2U t l+cox(t) l+saox(t) X t an 
u(t + l) = (1- B)u(t). 

(5.21) 

The only extinction equilibrium is col(x, u) = col(O, O). To invoke The­
orem 5.11, we need to ensure conditions (a) and (b) in Lemma 5.7 hold 
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when r0 = 1, namely that 

(a) 83 lnr(O, v,O)lv=o < O; 
(b) -2 < 883 lnr(O, v,O)lv=O' 

A calculation shows 

r0 = sb0 

and 

83 ln r(O, V, O)lv=O = -1 

when r0 = 1; hence, (a) holds. Condition (b) holds if e < 2 (i.e., if the 
speed of evolution is not too fast). Under this condition, the extinction 
equilibrium loses stability as r0 = sb0 increases through 1 (Theorem 
5.8), resulting in a bifurcation of positive equilibrium from the extinction 
equilibrium (Theorem 5.ll(a)). 

To determine the direction of bifurcation (and hence the stability of 
the bifurcating positive equilibria), we calculate K from formula (5.20) 
(noting that v = w = 1 in an m = 1 dimensional case): 

By Theorem 5.ll(b), we see that the bifurcation is 

• forward and stable if ao < -11 ; 
Co -S 

• backward and unstable if ao > -1 1 . 
Co -S 

If the Allee component effect a0 on newborn survival is sufficiently large 
compared to the strength of the negative feedback effect c0 on fertility, 
then the bifurcation is backward and unstable. In the opposite case, the 
bifurcation is forward and stable. □ 

We saw in Section 3.5.4 that backward bifurcations in population 
models generally give rise to a strong Allee effect (i.e., to an interval of 
r0 values less than 1 for which there exist a stable positive equilibrium 
in addition to the stable extinction equilibrium). We might expect to 
see this multi-attractor scenario for Darwinian models as well, although 
there are currently no general theorems to support this (as there are for 
nonevolutionarymodels [33]). The simulations shown in Figure 5.1 sug­
gests that a strong Allee effect can occur in the model (5.21). 
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Figure 5.1. Two solutions of Equations (5.21) with b0 = 2, s = 0.1, 
c0 = 0.1, a0 = 10, and e = 0.1 illustrate a strong Allee effect. First 
row: The solution with initial condition col(x (0), u (0)) = (4, 1) ap­
proaches the positive equilibrium col(8, 0). Second row: The solu­
tion with initial condition col(x (0), u (0)) = (3, 1) approaches the 
extinction equilibrium. 
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The Darwinian model equations (5.1) and (5.2) concern trait-driven (or 
strategy-driven) evolution. The model tracks the evolution of the mean 
trait within a population. Invasion-driven evolution, on the other hand, 
concerns evolutionary change caused by the invasion of mutant popu­
lations displacing a resident population [129]. However, if the resident 
population is immune to invasion by mutant populations, then its trait 
is said to be an ESS, which stands for evolutionarily stable strategy 
(strategy is synonymous with trait). Here, the invading species is repro­
ductively isolated from the resident species (i.e., members of the resident 
species do not have mutant offspring and vice versa).2 

One way to approach this problem is to begin with a Darwinian 
model (5.10) that has a stable equilibrium col(xe, Ue) and couple it to 

2This is the case with an asexually reproducing population in which a genetic mutation has oc­
curred. It is also the central notion of allopatric speciation of sexually reproducing species, in which 
two subpopulation are geographically separated for enough time to become, by natural selection, re­
productively isolated and are then reunited. 
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a Darwinian model for the invading mutant population (which presum­
ably would be a similar model to that of the resident since it models a 
mutant population). The resulting high-dimensional, coupled system 
has an equilibrium with the resident population at col(xe, ue) and the 
invading population at an extinction equilibrium, which if globally at­
tracting, would imply that the mutant invasion would fail. Another ap­
proach is to make use of the following theorem. 

Theorem 5.16. The ESS Maximum Principle [129]. The trait compo­
nent ue associated with an equilibrium col (xe, ue) of the Darwinian equa­
tions (5.10) is an ESS if and only if 

(a) col(xe, ue) is a stable equilibrium of the Darwinian equations 
(5.10), and 

(b) the adaptive landscapelnp (P (xe, v, ue)) has a global maximum 
at V = Ue. 

As an example, consider the Darwinian semelparous discrete logis­
tic model (5.8) with a competition coefficient 

(5.22) c(v-u)=c0 exp(- 2~(v-u/). 

This models the situation when the maximum competition intensity is 
experienced individuals whose trait v equals the population mean trait 
u. The Darwinian model equations (5.8) become 

(5.23) x (t + 1) = b0 exp(-½u2 (t)) l+c~x(t)x (t) and 
u(t + 1) = (1- B)u(t). 

In Example 5.13, we saw that Corollary 5.12 implies that when e < 2, the 
extinction equilibrium loses stability as b0 increases through 1, at which 
a forward-stable bifurcation of positive equilibria occurs for b0 ~ 1. 

We can prove more in this example by solving the equilibrium equa­
tions 

x = b0 exp(-~u2)-1-x and 
2 l+c0 x 

u = (1- B)u 

explicitly for the positive equilibria 

(5.24) ] for all b0 > 1, 
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which exist (and are unique). The Jacobian associated with (5.23), when 
evaluated at a positive equilibrium, is 

[ _!_ 0 ] 
~ 1-e · 

When e < 2, the eigenvalues J1 = 1/b0 and J2 = 1 - e satisfy IJi I < 1, 
and by the Linearization Principle, the positive equilibria are (locally 
asymptotically) stable for all b0 > I. 

But is the trait component Ue = 0 associated with these stable equi­
libria an ESS? The answer is "not necessarily." This is because adaptive 
landscape at a positive equilibrium 

lnp(P(xe,u,O)) = ln(b0 exp(-~u2 ) 
1 b _ 1 ) 

1 + c(u) - 0 -
co 

= ln b0 - ~v2 - ln( 1 + (b0 - 1) exp(-~:)) 

does not necessarily have a global maximum at u = 0. 

To see this, we first note that this function of v approaches -oo as 
v ➔ ±oo; hence, its global maximum occurs at a finite critical point, 
which is a root of the derivative 

-w + (1-w)(b0 - l)exp(-~) 
Ovlnp(P(xe,v,O))=v ( ( v2 ) ) • 

w (b0 - 1) exp - zw + 1 

Clearly v = O is a critical point. If it is the only critical point, then the 
global maximum of the adaptive landscape must occur there, and v = O 
is an ESS. 

However, other critical points are possible on the adaptive land­
scape. Two other critical points are found from the roots of the numer­
ator, namely 

provided 

that is to say provided 

(b0 - 1) (1 - w) 
------>l, 

w 

1 
w < 1 and b0 > -1--. 

-w 
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Figure 5.2. These two rows of plots illustrate the two possibilities 
found for the Darwinian model (5.23) when the trait component 
Ue = 0 of the positive equilibrium (5.24) is an ESS. Shown are the 
time series of the x and u components of the solution of equations 
(5.23) with initial condition x(O) = col(l, 1.5), parameter values 
e = 1/10, b0 = 3/2, and c0 = 1/100, and equilibrium Xe = col(SO, 0) 
given by formula (5.24). First row: w = 2. Second row: w = 1/2 
(in which case b0 < (1 - w )-1 = 2). The solid circle on the adaptive 
landscapes indicates the location of the initial condition u (0) = 1.5. 
The open circle indicates that of the equilibrium trait component 
Ue = 0, which is located at the global maximum of the landscape. 
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In this case, a calculation shows 

2 1-w( 1 ) avlnp(P(xe,v,O))lv=O = Wbo bo - 1- w > 0, 

and as a result, v = 0 is a local minimum. This means that the global 
maximum of the adaptive landscape occurs at v = v± and that v = 0 is 
not an ESS. 

In summary, for e < 2: 

• If the width w of the distribution (5.22) of the trait 
difference dependent competition coefficient is suffi­
ciently large, specifically if w > I, then the trait u = 0 
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associated with the stable positive equilibrium (5.24) 
is an ESS for all b0 > 1. 

• On the other hand, if the width w < 1, then u = 0 is 
an ESS only for inherent birth rates b0 small enough, 
namely b0 < (1- w)-1, and is not an ESS for larger 
bo, 
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What happens when the speed of evolution is too fast (i.e., if e > 2)? 
In this case, the population goes extinct for all b0 > 1 (despite the fact 
that the extinction equilibrium is unstable!). This is a case of so-called 
evolutionary suicide. See Exercise 5.29. 

See Figure 5.2 for examples when u = 0 is an ESS trait for the Dar­
winian logistic equation (5.23). Figure 5.3 shows an example when u = O 
is not an ESS and also how u = 0 ends up at a minimum on the adaptive 
landscape despite the fact that the trait equation in Darwinian models 
requires u (t) to move uphill on the adaptive landscape. This occurs be­
cause the adaptive landscape does not remain constant over time. 

A method utilizing Darwinian dynamic models that is widely used 
to study evolutionary processes, called Adaptive Dynamics, applies un­
der some severe restrictions. It assumes that only equilibrium dynamics 
occur and that the timescale on which the population dynamics equili­
brate is virtually instantaneous compared to the timescale for the evolu­
tionary dynamics of the mean trait. The method then utilizes a method 
called quasi-equilibration or quasi-steady-state approximation to study 
the trait-driven dynamics of a Darwinian model. 3 Roughly speaking, it 
is assumed that the population remains near an equilibria (in a so-called 
quasi-equilibrium state), which reduces the dimension of the model 
to just the trait equation with the population held fixed at the quasi­
equilibrium. The equilibrium of the resulting trait equation is then 
returned to the population equation, held fixed, to get a new quasi­
equilibrium state for the population, and the process is repeated un­
til the sequence of quasi-equilibrium traits converge. The accuracy of 
this method to describe trait-driven evolution defined by the Darwinian 
equations is not always guaranteed but can be rigorously justified using 
what is called singular perturbation theory (topics beyond the scope of 

3This classical method was orginally developed for the study of thermodynamics in physics. 
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Figure 5.3. These graphs illustrate a case found for the Darwinian 
model (5.23) when the trait component Ue = 0 of the positive equi· 
librium (5.24) is not an ESS. First row: Shown are the time series 
of the x and u components of the solution of equations (5.23) with 
initial condition x(0) = col(l, 1) and parameter values e = 0.1, 
b0 = 1.5, c0 = 0.01, and w = 0.l. In this case, w < l and 
b0 > be = 10/9. These graphs show that the solution approaches 
the equilibrium Xe = col(S0, 0) given by formula (5.24). The open 
circle on the adaptive landscape at equilibrium indicates the loca­
tion of the equilibrium trait Ue = 0, and the solid circle indicates 
that of the initial condition u (0) = 1. Note that the open circle is not 
located at the global maximum of the landscape, but at a local mini­
mum. Second and third rows: The evolving landscape is shown at 
selected times in order to illustrate how the trait u (t) (indicated by 
the open circles) manages to end up at a minimum as t --,. +oo, all 
the while moving uphill on the landscape. 

1.0 

1.0 

this book). Using this method for trait-driven evolution, Adaptive Dy­
namics then analyzes mutant- or invasion-driven dynamics by study­
ing the adaptive landscape. This method is generally applied to differ­
ential equation models but could in principle be applied to difference 
equation models. See [57] for an introduction to this method. The web­
page https://www.mv.helsinki.fi/home/kisdi/addyn.htm con-
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tains many references to papers and review articles on Adaptive Dynam­
ics. Also see [1] and the cited references for further commentary and 
discussion. 

5.5. R0 for Darwinian Models 

Suppose we additively decompose the projection matrix in equation 
(5.10), as in Chapters 2 and 3, into a fertility and transition matrix 

P (x, v, u) = F (x, v, u) + T (x, v, u), 

where the entries in the fertility matrix 

F (x, v, u) = [fij (x, v, u)] 

and transition matrix 

T(x,v,u)= [rij(x,v,u)]. 

Assumption 5.17. f ij, Tij E C2 (Rm x Ax A : R+), where A is an open 
interval in R1. For all (x, v, u) E R~ x Ax A, the inequalities O ::::; 
Tij (x, v, u) :::::; 1 and I-7=1 Tij (x, v, u) :::::; 1 hold, and the density-free 
terms fij (Om, v, u) and Tij (Om, v, u) satisfy 

(5.25) 

for all u, v E A. The projection matrix P (x, v, u) is irreducible for each 
(x, V, u) ER~ X AX A. 

Ifwe assume Assumption 5.17, then the projection matrixP (x, v, u) 
satisfies Assumption 5.3 that was necessary for the results in the previous 
sections. 

The analysis of the Darwinian matrix model (5.10) in Sections 5.2 
and 5.3 utilizes the spectral radius of the inherent projection matrix 

P (Om, V, u)lv=u = F (Om, V, u)lv=u + T (Om, V, u)lv=u. 

As for nonevolutionary matrix models in Chapter 3, we can instead use 
the often more analytically tractable reproduction number R0 for the 
analysis. From the next generation matrix 

F (x, v, u)(I - T (x, v, u))-1 , 

we define the reproduction number 

r0 (x, v, u) == p (F (x, v, u)(I - T(x, v, u))-1). 
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For notational simplification, we introduce the notation 

r0 (Om, v, u) == p (P (Om, v, u)) and 

Ro (Om, V, u) == p (F (Om, V, u) (I - T (Om, V, u))-1). 

Note that the bifurcation parameter in Sections 5.2 and 5.3 is r0 = 
ro (Om, V, Uc)lv=uc' where Uc is a critical trait. 

In order to locate the bifurcation point from the theorems in Sec­
tions 5.2 and 5.3, we need to locate a critical trait u = Uc such that 

(5.26) 
ro (Om, V, uc)lv=Uc = 1, 

avro (Om, v, uc)lv=uc = 0, and 
83ro (Om, V, uc)I _ < 0. 

V-Uc 

To do this using R0 in place of r0 , we utilize the following theorem. 

Theorem 5.18. [32] Assume Assumption 5.17, e > o, and 

P ( T (Om, V, Ue)lv=uJ < 1. 

(a) Thenforany u EU, 

(5.27) r0 (0, v, u)lv=u = 1 if and only if R0 (0, v, u)lv=u = 1. 

(b) If (5.27) holds for u E U, then there exists a constant k > 0 such 
that 

As a result, 

(5.28) avro (0, v, u)lv=u = 0 if and only if 8vRo (0, v, u)lv=u = 0. 

(c) If (5.27) and (5.28) holdforu EU, then 

83Ro (0, v, u)lv=u = k a3ro (0, v, u)lv=u. 

As a result, 

(5.29) 83ro (0, V, u)lv=u < 0 if and only if a~Ro (0, V, u)lv=u < 0. 

It also follows that (5.29) remains valid if"<" is replaced by ">" 
or"=': 
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Based on Theorem 5.18, we see that finding trait u = Uc that satisfies 
(5.26) is equivalent to finding a trait that satisfies 

Ro (Om, V, uc)lv=uc = 1, 

8vRo (Om, V, uc)lv=uc = 0, and 
a~Ro (Om, v, Uc)I _ < 0. 

V-Uc 

As a result, we have the following theorem. 

Theorem 5.19. Under the added assumption that 

p ( T (Om, V, uc)lv=uJ < 1, 

Theorem 5.8, Theorem 5.11, and Corollary 5.12 hold with 

Yo== P ( P (Om, V, Uc)lv=uJ 

replaced by 

A higher-dimensional Leslie matrix is a basic example for which no 
analytic formula is, in general, available for the dominant eigenvalue r0 

but for which a formula is available for R0 (Chapter 2). 

Example 5.20. Consider an m-dimensional nonlinear Leslie model with 
fertility and transition matrices 

0 b2f3zCx) bm-If3m-l (x) bmf3m(x) 
0 0 0 0 

F(x) = 0 0 0 0 and 

0 0 0 0 

0 0 0 0 
S1 0 0 0 

T(x) = 0 Sz 0 0 with 0 < si < 1, 

0 0 Sm-l 0 

where bi > 0 and all f3lOm) = 1 (cf. Example 3.18). The associated 
matrix equation models the dynamics of a population structured into a 
juvenile class x1 and m - 1 adult age classes xi for i = 2, ... , m - 1 with 
the time unit equal to the juvenile maturation period. Density affects 
fertility only, and individuals do not survive more than m time units. 
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Assume that an individual's age class fertility rates bd3i(x) are de­
pendent on its inherited trait v. Specifically, assume the density-free 
fertility rates have a Gauss-like distribution centered at v = 0 

wi > 0 (not all equal to O), 

where bi,o > 0 is the maximal birth rate for i-class individuals. We leave 
the density factors /3i(x, v, u) general except that 

/3/0m, v, u) = 1 

so that Assumption 5.3 holds. 

There is no analytic formula available for the dominant eigenvalue 
r0 (x, v, u) of the projection matrix P (x, v, u) = F (x, v, u) + T (x, v, u), 
but there is a formula for R0 (x, v, u), namely 

m 

R ( ) _ '°' b -v2!2w;/3 ( ) o X, V, U - L.J J[i we i X, V, U , 
i=l 

where 

{ 1 for i = I 
J[i= S1S2···Si-l fori=2,3,··•,m 

(see equations (2.29) and (2.30)). A calculation shows 

hence, the only critical trait is Uc = 0, and the only extinction equilib­
rium is 

Note that 

0 b2,o 
S1 0 

P (Om, V, 0)lv=O = 0 Sz 

0 0 

is primitive (Theorem 2.12). 

Other calculations show 

bm-l,O bm,O 

0 0 
0 0 

0 
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and 

P ( T (Om, V, u,)l"cuJ = P [ 

0 0 0 0 

]=0<1 
S1 0 0 0 
0 S2 0 0 

0 0 Sm-l 0 

Hence, we can apply Theorem 5.19, provided e is sufficiently small (the 
speed of evolution is not too fast). We conclude that the extinction equi­
librium loses stability as 

m 

R0 (Om, 0, 0) = I nibw 
i=l 

increases through 1. 

Also from Theorem 5.19, we can conclude (provided e is sufficiently 
small) that positive equilibria bifurcate from the extinction equilibria 
provided Ki= 0 and that the direction of bifurcation (and hence the sta­
bility of the bifurcating positive equilibria) is determined by the sign of 
K. For example, suppose there are no component Allee effects (i.e., 

8xJ3/0m, 0, 0) ~ 0 

for all k and i and that at least one derivative is negative). Then from 
formula (5.20) for K, it is clear that K > 0. In this case, the bifurcation is 
forward and stable. Specific examples are obtained if each density factor 
has one of the forms 

1 

where 
m 

Pi= Cc.Ji. x = I wijxj, Cc.Ji ER~, IICc.Jdl = 1 
j=l 

are weighted total population sizes. □ 

5.6. Applications 

S.6.1. Early Versus Delayed Reproduction. The scheduling of repro­
duction is a central issue in the analysis of life history strategies for any 
biological population [119]. Over the course of their lifetimes, should in­
dividuals reproduce uniformly or perhaps be more reproductive earlier 
(or later) in their lives? The answer is intimately tied up with survival 
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probabilities. For example, an individual with little survival probabil­
itywould probably want to put maximum effort into early reproduction. 
In this section, we use the methodology in this chapter to build a low­
dimensional model, which we can use to consider this question and to 
determine what scheduling strategy natural selection will favor under 
differing survival probabilities. 

We build a Darwinian version of an m = 2 extended Leslie model by 
classifying individuals by age, but only crudely: x1 are the individuals 
less than I-year-old and x2 are individuals older than 1 year. Assume 
individuals become reproductively active within 1 year and construct 
a 2 x 2 Leslie model, using 1 year as the time unit, with fertility and 
transition matrices 

with bi > 0 and 0 < si < 1. 

We assume density dependence on fertility only and that both classes are 
affected the same way by total population size 

F(x) = [ b1,6 ~lxll) b2,6 ~lxll) ] , 

where 

x = [ :~ ] , llxll = X1 + X2, 

and the positive-valued (twice continuously differentiable) factor ,6 (z) 
satisfies 

,6 (0) = 1 and Oz,6 (0) < 0. 

We know, from the general theorems in Chapter 3, that a forward-stable 
bifurcation of positive equilibria occurs as 

S1 
Ro= b1 + b2-1--

- S2 

increases through 1 (causing the extinction equilibrium to destabilize). 
We refer to b1 and b2 , respectively, as the "early" and "late" fertility rates 
of an individual, and we assume each is determined by a trait v subject 
to natural selection. 

We assume that an individual with trait v has a fertility rate that is 
a fraction cpi (v) of bi, which we view as the largest possible fertility rate 
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available to individuals. Specifically, we take q;i (v) to have a normal type 
distribution centered at vi with variance wi: 

( (v -vi) q;i (v) = exp - 2wi . 

We assume v1 =j:. v2 so that individuals can maximize either early repro­
duction or late reproduction, but not both. Without loss in mathematical 
generality, take v1 = Oas the reference point for early reproduction and 
choose a trait scale so that v2 = 1 for later reproduction. For simplicity 
in this application, we assume equal variances w1 = w2 = w. Thus, 

q;1 (v) =exp(-~:) and q;2 (v) = exp(- (v ;wl/) 

for which 

F(x, u) = [ b1 exp(-i:) ~ (llxll) b, exp(- '"i,,'.J') ~ (llxll) ] · 

(In this model, u does not appear in the matrix entries and is left out of 
the argument list in F.) The projection matrix for this model 

(S.30) p (x, u) = [ b1 exp(-:~ )fi (llxll) b, exp(-'"t) fi (llxll) ] 

leads to the Darwinian model equations 

(5.31) x(t+l)= P(x,v)lv=u(t)x(t) and 

u (t + 1) = u (t) + e av ln r (x (t), v )lv=u(t), 

where r (x, v) is the spectral radius ( dominant eigenvalue) of P (x, v ). 
The projection matrix P (x, v) is a Leslie matrix with 

R0 (x, v) = b1 exp(-~:) ,6 (llxll) + b2 exp( - (v ;wl)
2

) ,6 (llxll) 1 ~\2 • 

(See equation (2.29) in Section 2.3.) 

We want to determine the existence and stability of equilibria 
col(xe, Ue) E Rt X Rand the ESS status of the trait component Ue. We 
are also interested in the fractions q;1 (ue) and q;2 (ue) because they indi­
cate, respectively, the effort directed toward early and late reproduction 
when at equilibrium. 
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Theorems 5.18 and 5.19 imply (if the speed of evolution is not too 
fast) that a forward-stable bifurcation of positive equilibria occurs at 
R0 (02 , uc) = 1, where Uc is a critical point (i.e., a point u = Uc, where 
avro (Oz, v)lv=O = 0 or equivalently avRo (02, v)lv=u = 0). We know the 
bifurcation is forward since the nonlinearities in P (x, u) are both neg­
ative density effects (i.e., 82 /3 (0) < 0). The bifurcating positive equi­
libria have trait components Ue ~ Uc for R0 (Oz, Uc) ~ 1; therefore, 
(pi (ue) ~ (pi (uc). The properties of positive equilibria lying outside a 
neighborhood of the bifurcation point depend on the properties of the 
nonlinearity /3 (z). We will consider only positive equilibria near the bi­
furcation point. 

Our attention is then directed to critical traits, that is to say the roots 
u = Uc of the equation 8vRo (02 , u )lv=u = 0 which (after a cancellation 
of the factor -1/ w) is 

( u2 ) ( (u - 1)2) s1 b1uexp - 2w +b2 (u-l)exp - 2w 1 _ 82 =0. 

Clearly,neitheru = 0oru = 1 arerootsofthisequation. Byalgebraically 
rewriting this equation for u as 

h(u) = o, 
where 

-1 

o == b1 (b2 -
8-1 -) and 1- s2 

h (u) == 1 ~ u exp( 1 ( u - ~)), 

we see that there are no roots for u < 0 or u > 1 (since o > 0 and h (u) 
is negative). On the remaining interval O < u < 1, some straightforward 
calculus shows that positive-valued function h (u) is a monotonically de­
creasing function if 

which we assume holds. Since 

1 
w> 4' 

lim h (u) = +oo and h (1) = 0, 
U---+0+ 

it follows that there is a unique root (critical point) uc (8) for each value 
of 8 > 0, namely 
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As previously noted, stable positive equilibria exist (by bifurcation 
from the extinction equilibrium associated with a critical trait Uc (8) pro­
vided evolution is not too fast) at least for R0 (02 , Uc (8)) ~ 1. What life 
history characteristics do these equilibria have? Specifically, what are 
the relative values of rp 1 Cuc (8)) and rp 2 (Uc (6))? 

Note that 

Uc (0) = 1 and lim Uc (8) = 0. 
6--> + 00 

Also note that 

(()2 (Uc (0)) = 1, (()1 (Uc (0)) < 1, 
lim (()1 Cuc (8)) = 1, 

6-->+oo 
and lim rp2 (uc (8)) < 1. 

6-->+oo 

For the positive equilibria 

col(xe, ue) ~ col(02 , Uc (6)) 

when 
R0 (02 , Uc (8)) ~ 1, 

we have the following conclusions: 

• 6 ~ 0 implies rp 1 (ue) < 1 and rp2 (ue) ~ 1; 
• 6 ~ +oo implies rp1 (ue) ~ 1 and rp 2 (ue) < 1. 

The quantity 8 is the ratio between the maximal possible newborns 
produced by early reproduction b1 and the (lifetime) expected newborns 
produced by late reproduction (i.e., b2sif (1 - s2)). Thus, we get the fol­
lowing not surprising result. 

For small 6, late reproduction is maximized (and early 
reproduction is not), whereas for large 8, the opposite 
is true (i.e., early reproduction is maximized [and late 
reproduction is not]). That is to say, if births from early 
reproduction are low relative to those obtained from 
later reproduction, then the equilibrium trait Ue cor­
responds to late reproduction (and vice versa). 

But is Ue an ESS trait (i.e., does the adaptive landscape 

lnp (P (xe, V )) , 

or equivalently p (P (xe, v)), have a global maximum at v = Ue)? The 
answer is yes, as we can see as follows. By Theorems 2.15 and 5.18 that 
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Figure 5.4. The time series of the solutions of the Darwinian model 
(5.30)-(5.31) with initial conditions x (0) = col(l, 0) and u (0) = 0.5 

and parameter values b1 = 1, c = 1/100, s1 = 1/5, s2 = 3/4, w = 1/3, 
and e = 1/ 4 are shown in three columns of plots for three values 
of b2 • The left column with b2 = 0.5 shows a trait equilibrium 
Ue = 0.111 (which gives R0 (02 , ue) = 1.104) and a reproductive 
schedule with an emphasis on early reproduction. The center col­
umn with b2 = 1.25 shows a trait equilibrium Ue = 0.500 (which 
gives R0 (02 , ue) = 1.375) and a reproductive schedule with uniform 
reproduction schedule. The right column with b2 = 2.5 shows a 
trait equilibrium at Ue = 0.852 (which gives Ro (02 , ue) = 2.272) and 
a reproductive schedule with an emphasis on late reproduction. In 
all cases, the bottom row of plots shows that the equilibrium trait Ue 

lies at a global maximum on the adaptive landscape at equilibrium. 

relate r0 to R0 , this is equivalent to asking whether 

( ( u2 ) ( ( V - 1)2
) s1 ) R0 (xe, v) = b1 exp - 2w + b2 exp - 2w 1 _ Sz /31 (llxll) 

has a global maximum at v = Ue. As a function of v, the positive-valued 
and bounded function R0 (xe, v) vanishes as lvl ➔ +oo; therefore, its 
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maximum value must occur at a finite critical point. We have shown 
that when w > 1/4, there exists one and only one critical point, namely 
v = Uc (8), which therefore must be the location of the global maximum. 

We conclude that when w > 1/4, the trait component 
Ue is an ESS trait, at least for the positive equilibrium 
near the bifurcation point R0 (02 , Uc (p )) ~ 1. 

The existence and analysis of equilibria outside a neighborhood of the bi­
furcation point depends on the properties of the nonlinear fertility den­
sity factor /3 (lxl). Figure 5.4 shows sample simulations that illustrate the 
conclusions we have obtained for this Darwinian model. 

We have restricted our attention to the case when the variance of 
q:,1 ( v) and q:,2 ( v) satisfies w > 1/ 4. On the other hand, if w < 1/ 4, then 
it is possible that there exist more than one critical point, each of which 
can produce positive equilibria by bifurcation. Thus in this case, there is 
the possibility of multiple stable equilibria and ESS traits ( and as a result, 
initial-condition dependent equilibration), which is a more complicated 
case that we do not consider here. 

S.6.2. Coles's Paradox: Semelparity Versus Iteroparity. Life his­
tory strategies of biological organisms crucially involve trade-offs in the 
allocation ofresources and activities involving reproduction versus other 
processes that promote individual survival and growth. Although not 
always the case, frequently there are costs associated with reproduction 
that result in negative effects on survival [119]. Should an individual 
put so much effort into reproduction that it results in its death or should 
it allocate resources toward post-reproductive survival, at the expense of 
reproductive effort and output, so as to have more than one reproductive 
episode in its lifetime? In the first case, the population is semelparous, 
and in the second case, it is iteroparous. And which of these two strate­
gies does evolution favor? 

In a classic paper, Cole [22] argued that evolution should favor 
semelparity. However, given that iteroparity is common among biolog­
ical species, this became known as Cole's Paradox. In response, several 
authors pointed out that Cole did not adequately take into account new­
born and adult survival probabilities [119]; in particular, see [16]. These 
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early resolutions of Cole's Paradox were based almost exclusively on lin­
ear dynamic models of population growth. Nonlinear density effects, 
however, can play a significant role in determining the circumstances 
when evolution will favor semelparity or iteroparity [120]. One purpose 
of this section is to demonstrate this assertion by means of a Darwinian 
model with a minimal number of density factors and simple trait depen­
dencies. Since the modeling methodology of the Darwinian dynamic 
models in this chapter assume a continuous phenotypic trait (unlike the 
discrete, genotypic approaches most often been taken with regard to this 
issue), the argument put forth by Hughes [81] is relevant, namely that 
the binary classifications of either semelparity or iteroparity is often too 
crude to account for the life histories of natural populations (which often 
exhibit variability and plasticity in post-reproductive survival). 

Fundamental to the issue of reproductive effort and survival are 
trade-offs. Increased effort and success in one activity (such as repro­
duction) often leads to decreased effort or success in another (such as 
survival) [119], [123]. To capture a trade-off between fertility and post­
reproduction survival, we replace the inherent birth rate b0 by b0 qi in the 
basic linear equation equation (1.3) in Section 1.1, where qi is the fraction 
of the resource gathering activity that is allocated to reproduction and 
b0 is the maximal possible newborn birth rate. We assume adult post­
reproduction survival is proportional to the remaining fraction 1- qi and 
equals s0 (1 - qi), where s0 is the maximal possible post-reproduction 
survival probability. In the absence of density effects, the population 
growth rate is 

(5.32) 

(See Exercise 5.28.) We add nonlinear density effects by including a neg­
ative effect on fertility as described by a discrete logistic-type factor. If 
we ignore density effects on adult post-reproduction survival, then we 
have the population growth rate 

1 
r(x) = b0qi-1-- + s0 (1 - qi), 

+ex 
b0 , c > 0, 0 < s0 < 1. 

We assume that the allocation fraction qi = qi ( v) and the intraspe­
cific competition coefficient c = c (v - u) depend on a trait v subject to 
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natural selection and on its population mean u. An individual's inher­
ent fertility b0 cp (v) depends on only v (and not u, because it is a density­
free rate). The magnitude of the density effect on individual fertility, as 
measured by the coefficient c (v - u), depends on how different the in­
dividual is from most other individuals (i.e., the typical individual with 
trait u ). Then 

1 
r(x,v,u)=b0 cp(v) 1 ( ) +s0 (1-cp(v)). 

+c V-U X 

In the example considered here, we make further assumptions on cp and 
C. 

First, we assume there is a unique trait v0 , where cp (v) (and hence 
inherent fertility b0 cp ( v )) is maximal and that cp (v) is normally distribut­
ed around v0 . Because a reference point and unit scale for the trait v can 
be arbitrarily chosen, we take v0 = 0 and a standard deviation equal to 
1, without loss in mathematical generality: 

cp ( v) = exp ( - ~ v2 ) . 

Note that when v = 0, post-reproduction survival equals 0; therefore, we 
refer to O as the semelparous trait. 

Second, we assume maximum competition occurs between like in­
dividuals so that an individual born with trait v experiences the greatest 
competition for resources when v = u, the population mean. Mathemat­
ically, we assume c (z) E C2 CR+ : R+) has a global maximum at z = 0. 
Specifically, we assume c (z) is normally distributed with variance w: 

(5.33) c(z) = c0 exp(- 2~z2), w > 0. 

Under these assumptions and specifications, we have population 
growth rate 

(5.34) 
r(x,v,u)=b0 exp(-½v2 ) ( \ 2) 

l+c0 exp - zw (v-u) x 

+s0 ( 1- exp(-½v2)) 

with which to construct the Darwinian equations (5.5) and (5.6): 

x (t + 1) = b0 exp(-½u2 (t)) I+c~x(t)x (t) 

(5.35) +s0 (1-exp(-½u2 (t)))x(t) and 
u (t + 1) = u (t) + 8 Ovr (x (t), v, u (t))lv=u(t)' 
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Our goal is to study the existence and stability of positive equilibria and 
when their trait components are ESS traits. 

The equilibrium equations are ( after some simplifications in the trait 
equation) 

x = (bo exp(-~u2 ) 1 /cox+ s0 ( 1- exp(-~u2 ))) x and 

0 = u (bo 1 
1 - s0 ) . +c0 x 

If b0 i=- s0 , then the only extinction equilibrium is col(x, u) = col(0, 0). 
As we will see, we will eventually be interested in only b0 > 1, so b0 i=- s0 

is not a constraint for us. It is left as Exercise 5.30 to show that R0 (0, 0) = 
b0 and to apply the general theorems in Section 5.3 to show that if 

(5.36) 
2 e < B* == -1--, 

- So 

then a forward and stable bifurcation of positive equilibria occurs at 
bo = 1. 

We can, however, obtain more in this example by an analysis of 
the equilibrium equations and a use of the Linearization Principle. The 
equations for a positive equilibrium are 

1 = b0 exp(-~u2 ) e-u2 /2 1 + s0 (1- exp(-~u2 )) and 
2 1 + CoX 2 

0 = u (bo 1 
1 - s0 ) • + CoX 

If 
1 

bo 1 - So= 0, + CoX 

then the second equation is certainly satisfied, but the first equation re­
duces to 1 = s0 , which is a contradiction to our assumption that s0 < 1. 

Therefore, the second equilibrium equation implies u = 0 which, when 
placed into the first equation, yields 

1 
l=b 

o 1 + CoX 

whose solution is x = (b0 - 1) /c0 . Thus, the positive equilibria of the 
model equations (5.35) are 

(5.37) [ ~: ] = [ b~l ] for all bo > 1. 
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Note that all positive equilibria in this model have a semelparous 
mean trait u = 0. Is u = 0 an ESS trait? To determine an answer to 
this question, we need to determine the stability of the equilibrium and 
whether the adaptive landscape at equilibrium ln r (xe, v, ue), or equiva­
lently that r (Xe, v, Ue), has a global maximum at v = 0. The answer is in 
the following theorem in which 

1 
w* == -- and 

1- So 
b* 1 

0 := 
1 - (1- So) W. 

Theorem 5.21. The positive equilibria (5.37) of the Darwinian model 
equations (5.35) are (locally asymptotically) stable if the speed of evolution 
e is less than the threshold B* and are unstable if e > B*. 

(a) If e < B* and w > w*, then the semelparous trait ue = O is an 
ESS for all b0 > 1. 

(b) If e < B* and w < w*, then the semelparous trait Ue = 0 is an 
ESS for b0 on the interval 1 < b0 < b0 but is not an ESS for 
bo > b'o. 

Proof. A straightforward calculation shows that the Jacobian associ­
ated with equations (5.35), when evaluated at the positive equilibrium, 
is a triangular matrix 

( b: 1 - (1 ~ So) 8 ) 

whose eigenvalues Ai and A2 appear along the diagonal: 

1 
Ai = bo > 0 and A2 = 1 - (1 - s0 ) e < 1. 

Since b0 > 1 for a positive equilibrium (5.37), we see that IAil < 1 
and that the Linearization Principle implies the equilibrium is (locally 
asymptotically) stable if ,l2 > -1. We conclude that the positive equilib­
ria (5.37) are stable if e < B* and unstable if e > B*. 

To establish (a) and (b), we investigate whether or not r (xe, v, ue), 
that is 



242 5. Darwinian Dynamics 

has a global maximum at v = 0. For notational simplicity, let this func­
tion of v be denoted by A (v). The question is whether or not A (0) = 1 
is a global maximum of A (v). 

We begin by noting that limv ..... ±oo A ( v) = s0 < 1 and that, conse­
quently, the global maximum must occur at a (finite) critical value v of 
A (v ). Critical values are the roots of ovA (v ). A straightforward but te­
dious calculation (a computer algebra program helps) shows 

OvA(v)=vq(y(v)) 1 
2 exp(-~v2), 

w((b0 -l)y(v)+l) 

where we have defined 

y(v) == exp(- 2~ v2 ) 

and where q (y) is the quadratic polynomial 

q(y) == - w(b0 - s0 ) + (b 0 -1) (b 0 + (2s0 - b0 ) w)y 

+ ws0 (b 0 - 1)2 y2 

in y. Thus, the critical points of A(v) are v = 0 and any roots of 
q (y ( v)) = 0. The quadratic q (y ), whose graph is a concave upward 
parabola with a negative intercept, has a unique positive root which we 
denote by y* > 0. The nonzero critical traits on the landscape are there­
fore obtained by solving the equation 

y* = exp(- 2~v2) 

for v. It follows that if y* > 1, then there are no nonzero critical traits, 
but if y* < 1, there exist exactly two nonzero critical traits 

v = ±✓-2wlny*. 

The first case y* > 1 occurs ifand only if q (1) < 0, that is ifand only 
if 

q (1) = b0 ((1- (1 - s0 ) w) b0 - 1) < 0. 

An inspection of this inequality shows it holds if and only if either 

• w > w* or 
• w < w* and bo < b0. 

(5.38) 

In this case, v = 0 is the only critical point, and because A ( v) is a 
positive-valued and bounded function that satisfies lim1v1 ..... +00 A (v) = 0, 
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Figure 5.5. A sample solution of the Darwinian model equations 
(5.35) with initial conditions x (0) = u (0) = 1 are shown for each 
case y* > 1 and y* < 1. In both cases, parameter values are w = l, 
Co = 1, and So = 0.5 for which bo = w* = 2. In the top row, 
b0 = 1.5 < b0, and in the bottom row, b0 = 4 > b0. The right col­
umn shows the adaptive landscape In r (xe, v, u0 ) at the equilibrium, 
which are seen to have a global maximum at v = 0 in the top row 
and not to have a global maximum at v = 0 in the bottom row. 
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it follows that the global maximum occurs at v = 0. By the ESS Maxi­
mum Principle, v = 0 is an ESS in this case. 

The second case y* < l occurs if and only if q (l) > 0, that is if and 
only if 

(5.39) w < w* and b0 > b0. 
In this case, N' (0) > 0, and a local minimum occurs at v = 0. By the 
ESS Maximum Principle, v = 0 is not an ESS in this case. □ 

For the model considered here, we found the following. 

All positive equilibria have a semelparous mean trait 
u = 0, but this trait is not necessarily an ESS. It is not 
an ESS if the width w of the trait-dependent intraspe­
cific competition coefficient c (v - u) is small and the 
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inherent fertility rate b0 is large. Otherwise, u = 0 is 
an ESS, which is in agreement with Cole's assertion. 

See Figure 5.5 for numerical examples of these two possibilities. 

We have considered here a model with a minimal number of fea­
tures and special assumptions (no population structure, a logistic-type 
density dependence in fertility, a normal distribution for rp, and so on). 
For more elaborate models from which more complicated conclusions 
are possible, see [35], [37], [45], [68]. 

5.6.3. Evolution and Complex Dynamics. In Section 1.2.3, we saw 
that the Ricker equation 

X (t + 1) = b0e-cx(t)x (t) 

with fitness function 

lnr(x) = ln(b0 exp(-cx)) 

has a forward-stable bifurcation at b0 = 1 and that there exists a unique 
positive equilibrium 

1 
Xe= -lnb0 

C 

for each b0 > 1 which is (locally asymptotically) stable for 1 < b0 < 
e2 and unstable for b0 > e2 • We also saw that as b0 > e2 increases, 
there occurs a cascade of period-doubling bifurcations and, ultimately, 
complicated nonperiodic and "chaotic" attractors. 

The occurrence of complex attractors-by which we simply mean 
nonequilibrium attractors-is not uncommon is discrete population 
models. Do such dynamics occur in biological populations? It has been 
rigorously demonstrated, by long-term replicated and controlled labo­
ratory experiments, that a beetle population will indeed follow such a 
model-predicted route-to-chaos [SO], [41], [23], [51], [52], [53]. Other ex­
periments have also shown populations with chaotic dynamics [4], [5], 
[6], [71], [126]. 

However, unequivocal evidence for deterministic complex and 
chaotic dynamics in natural populations is rare [113], [134]. Several hy­
potheses have been offered for why this is the case, including the diffi­
culty caused by the presence of noise in data, the lack of long-term data 
sets, and the damping effects of interacting species in food webs. An­
other hypothesis is that evolution selects against population oscillations 
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and complex dynamics. It is this latter question that we will address 
here by making use of a Darwinian version of the Ricker equation (5.9) 
in Example 5.1. 

Assume that inherent fertility has a normal distribution as a func­
tion of an evolving trait v (scaled and referenced to have mean 0 and 
standard deviation 1) and that the intraspecific competition coefficient 
is again given by (5.33). The resulting fitness function 

lnr(x, v, u) = ln( b0 exp(-~v2 ) exp(-c0 exp(- 2~ (v - ui) x)) 

produces the Darwinian Ricker model 

(5.40) 
x (t + 1) = b0 exp(-½u2 (t)) exp(-c0x (t)) x (t) 

u(t + 1) = (1- 8)u(t). 

We can analyze this model in the way we analyzed the similar Darwinian 
discrete logistic (5.23) in Section 5.4. From the equilibrium equations 

x=b0 exp(-½u2 )exp(-c0 x)x and 
u = (1- e)u, 

we get, in addition to the extinction equilibrium col(x, u) = col(0, 0), 
the positive equilibria 

(5.41) 1 ] -lnb0 
Co 

0 ' bo > L 

The Jacobian 

-boue-u212e-coxx ] 

1-e 
evaluated at these two equilibria gives 

J (0, 0) = [ b; 1 ~ e ] ' 

[ 1 - ln b0 0 ] 
J (Xe, Ue) = 0 1 - $ , b0 > L 

The eigenvalues Ai of these diagonal matrices appear along their diago­
nals. 

For both Jacobians, 1 - e is an eigenvalue, and by the Linearization 
Principle, both equilibria are unstable if the speed of evolution is too 
fast (i.e., if e > 2). In this case, it turns out limt---, 00 x (t) = 0 for all 
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positive, nonequalibrium solutions and evolutionary suicide occurs 
(see Exercise 5.29). 

If e < 2, then the extinction equilibrium col (0, O) loses stability as 
b0 increases through 1, and the positive equilibrium is stable for 1 < 
b0 < e2 • In this case, this Darwinian version of the Ricker equation has 
the same equilibrium existence and stability properties as the nonevolu­
tionary Ricker equation. But is u = 0 an ESS? 

Theorem 5.22. Suppose e < 2 in the Daiwinian Ricker model (5.40). 
For 1 < b0 < e2, the positive equilibrium (5.41) is (locally asymptotically) 
stable. 

(a) Ifw > 2, then Ue = 0 is an ESS. 

(b) If w < 2, then Ue = 0 is an ESS for 1 < b0 < ew and not an ESS 
forew < b0 < e2 . 

Proof. As a function of v, the adaptive landscape at equilibrium 

ln r (Xe, v, O) = ln b0 - ½v2 - e-v2 !(2w) ln b0 

approaches -oo as u -+ ±oo; hence, its global maximum occurs at a 
finite critical point. Critical points are the roots of the derivative 

Ou lnr(xe, v,O) = v (-1 + lnio exp(- 2~ u2)). 

Clearly v = 0 is a critical point. If it is the only critical point, then the 
global maximum of the adaptive landscape must occur there, and u = 0 
is an ESS. Other possible critical points are roots of the parenthetical 
factor, which are 

provided b0 > ew. 

(a) If w > 2, then for 1 < b0 < e2 the only critical trait on the 
adaptive landscape is u = 0, which is therefore at the global 
maximum. 

(b) Suppose w < 2. A calculation shows that the second derivation 

a~ ln r (Xe, V, 0)lv=O = -1 + b ln bo 
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is positive for b0 > ew, which implies v = 0 is a local minimum 
and therefore is not an ESS. By symmetry, the global maximum 
must occur at both critical points V+ (since the landscape is an 
even function of v). 

□ 

Figure 5.6 shows simulation examples that illustrate the conclusions 
given by Theorem 5.22. 

Note that in the Darwinian Ricker model (5.40), a population at 
equilibrium has trait component Ue = 0, which implies that the inher­
ent population growth rate r0 equals b0 . From Theorem 5.22, we draw 
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Figure 5.6. Shown are the time series plots of the solution of the 
Darwinian Ricker model (5.40) with parameters b0 = 6, c0 = l, and 
e = 0.1 and initial conditions x (0) = u (0) = 1. The solution and its 
time series plots are independent of w, but the adaptive landscape is 
not, as seen with two sample plots with w = 3 and w = 1. At v = 0, a 
global maximum occurs when w = 3 (Theorem 5.22(a)), and a local 
minimum occurs with w = 1 (Theorem 5.22(b)). 
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the following conclusions. 

• When e < 2 and w > 2, the equilibrium trait Ue = 0 
is an ESS for b0 on the entire interval 1 < b0 < e2• 

In this case, we conclude that this Darwinian Ricker 
model predicts that evolution has no effect on the on­
set of complex (nonequilibrium) dynamics. 

• If e < 2 and w < 2, then the threshold for the on­
set of complex (nonequilibrium) dynamics remains 
at b0 = e2, but evolution will not favor the non-ESS 
trait ue = 0 for those values of b0 near the thresh­
old. Instead, evolution favors mutants with traits 
at u = v± i- 0, where the inherent birth rate is 
reduced to b0 exp(-v±/2w) < b0 away from the 
threshold e2 • In this sense, evolution selects against 
complex dynamics in this case when the width w of 
the distribution of competition coefficients (5.22) is 
sufficiently narrow. 

In Theorem 5.22, it is assumed that the speed of evolution is not too fast 
(i.e., e < 2). What happens in this model when the speed of evolution 
e exceeds 2? We saw previously that, in this case, all equilibria are un­
stable, including the extinction equilibrium. Nonetheless, it turns out in 
this case that all populations go extinct (evolutionary suicide occurs). 

Theorem 5.23. Suppose the speed of evolution e > 2 in the Darwinian 
Ricker model (5.40). Then evolutionary suicide occurs, in the sense that 
limt-+oo x (t) = 0 for all initial conditions x (0) ~ 0 and u (0) i- 0. 

Proof. The trait equation for u (t) in (5.40) is uncoupled from the popu­
lation equation for x (t) and is a simple linear difference equation whose 
solution is 

u (t) = c1 - e/ u co). 
Thus, the equation for x (t) becomes 

x (t + 1) = b0 exp (- ~ (1 - e)21 u2 (0)) exp(-c0x (t)) x (t) 

(a nonautonomous difference equation). Some straightforward calculus 
shows that 

1 
0 ~ exp(-c0 x)x ~ -e-1 for x ~ 0 

Co 
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from which we have the inequality 

(5.42) ( 1 2t ) 1 1 0:::; X (t + 1) ::s; bo exp -2 (1- e) u2 (0) c/-

for all t E Z+. Since (1- e)2 > 1, it follows that the exponent on the 
right side satisfies 

-~ lim (1- et u2 (0) = -~ lim ((1 - e)2)t u2 (0) = -oo, 
2 t---->oo 2 t---->oo 

and as a result, we get from (5.42) that 

o ::s; lim x(t + 1) ::s; b0 lim exp(--2
1 (1- et u2 (o)) __.!:__e- 1 = o. 

t➔ oo t➔oo Co 
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Figure 5.7. The time series for a sample solution with initial condi­
tions x(O) = u (0) = 1 (and c0 = 1) of the Darwinian Ricker model 
(5.40) is shown for two values ofb0 when e > 2. Both show the popu­
lation going extinct. whereas the nonevolutionary Ricker model with 
the same parameter values and initial condition (see the column of 
plots on the left) does not predict extinction, namely survival with 
equilibrium dynamics when b0 = 6 and nonequilibrium dynamics 
whenb0 = 25. 
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Figure 5.7 illustrates examples of evolutionary suicide when the 
nonevolutionary Ricker equation predicts equilibrium dynamics and 
when it predicts complex (chaotic) dynamics. 

The Darwinian Ricker model considered here was based on specific 
submodels for the trait dependence of the coefficients. Other submodels 
can lead to different conclusions. For example, in [36], a hierarchical 
dependence c (v - u) = c0 exp(w (v - u)) is used in place of (5.22) with 
the result that, except for high-speed evolution, the b0 threshold for the 
onset of nonequalibrium, complex dynamics is larger than e2 ; in this 
sense, evolution selects against complex dynamics. We conclude that the 
relationship between evolution and complex dynamics is a complicated 
one and is significantly dependent on the nature of the trait dependency 
of the coefficients in the Ricker equation. 

5. 7. Concluding Remarks 

In this chapter, we studied a method for including evolution by Dar­
winian principles into a population model. To use this method, a mod­
eler describes how (at least some) vital rates depend on a (continuous) 
phenotypic trait that is subject to natural selection and constructs an ex­
panded dynamical system that includes the population dynamics and 
the dynamics of the population mean trait. In our presentation of the 
method, we used ( as is commonly done) the logarithm of the spectral ra­
dius of the population projection matrix as the fitness function [3], [129]. 
We looked at some theorems that generalized the basic results in Chapter 
3 concerning the stability properties of an extinction equilibrium and the 
bifurcation of positive equilibria that occurs when it destabilizes. Under 
the assumption of primitivity of the inherent projection matrix, we saw 
how the general basic bifurcation theorem for nonevolutionary models, 
that relates the stability of the bifurcating positive equilibrium to the di­
rection of bifurcation (Chapter 3), holds for a general Darwinian model, 
provided the speed of evolution is not too fast. We also introduced the 
notion of an ESS trait and the ESS Maximum Principle. Several appli­
cations of this modeling methodology and analysis appearing in Section 
5.6 illustrate how a stable equilibrium might or might not be associated 
with an ESS trait and hence indicate a trait favored by evolution. 
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As seen in Section 3.6, there are applications in which the inherent 
population projection matrix is not primitive. We saw there that the ba­
sic principle that the direction of bifurcation of equilibria (upon destabi­
lization of an extinction equilibrium) determines their stability does not 
necessarily hold in this case and that, furthermore, other (nonequilib­
rium) attractors can result from the bifurcation. In general, the bifurca­
tion scenario in the imprimitive case can be extraordinarily complicated, 
especially in higher-dimensional structured population models, and it 
is not well understood except in special cases. The same is, of course, 
true for evolutionary versions of an imprimitive population model. For 
examples and applications of some imprimitive Darwinian models, see 
[127], [128]. 

5.8. Exercises 

Exercise 5.24. Show, with methods used in Example 5.5, that the Dar­
winian Ricker model (5.9) has a unique extinction equilibrium for all 
b0 > 0 and that it has a positive equilibrium if and only if b0 > 1 (in 
which case it is unique). 

Exercise 5.25. Show, with methods used in Example 5.5, that the Dar­
winian semelparousjuvenile-adult model in Example 5.2 has a unique 
extinction equilibrium for all b0 > 0 and that it has a positive equilib­
rium if and only if b0 > 1/s1 (in which case it is unique). 

Exercise 5.26. Apply Lemma 5. 7 and Theorem 5.8 to the Darwinian 
Ricker model (5.9). Then apply Theorem 5.11. 

Exercise 5.27. Show that the trait component u = 0 of the solution of 
equations (5.21) with initial condition col(x (0), u (0)) = (8, 1) shown in 
Figure 5.1 is an ESS. 

Exercise 5.28. Consider the linear population model equation 

x (t + 1) = rx (t) 

with r given by (5.32), b0 > 0, 0 < s0 < 1, and 0 :::; cp :::; 1. 

(a) If b0 < 1, prove that the population goes extinct for all initial 
conditions x (0) ~ 0. 
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(b) Suppose b0 > l. Show that as a function of the allocation frac­
tion r:p, fitness ln r is maximized when r:p = l (i.e., the pop­
ulation is semelparous and, in this case, survives by growing 
exponentially for all initial conditions x (0) > 0). 

Exercise 5.29. Assume e > 2 in the Darwinian discrete logistic model 
(5.23). For all initial conditions 

col(x (0), u (0)) #- col(xe, 0) 

with x (0) > 0, prove that limt----, 00 x (t) = 0. 

Exercise 5.30. Use Corollary 5.12 to show that a forward and stable 
bifurcation of positive equilibria occurs at b0 = l in the model (5.35) if 
8 < 2/ (1 - So). 

Exercise 5.31. Construct and analyze a Darwinian model as done in 
Section 5.6.2 but using instead 

1 1 
r:p ( V) = -1 2 and C ( V - U) = Co 1 2 . + v l + -(v- u) 

2w 

Compare your results with those in Theorem 5.21. 

Exercise 5.32. Consider a Darwinian version of the juvenile-adult 
model with fertility and transition matrices 

F (x v u) = [ O b2 1+:ox2 ] and 
' ' 0 0 

T(x, v,u) = [ O( v2) O( v2 ) ] s1 exp - 2 s2 exp - 2w · 

(a) Show that Uc = 0 is the only critical trait and find a formula 
for R0 . 

(b) Apply Theorem 5.8 to show that the extinction equilibri­
um col(O2 , 0) loses stability as R0 increases through 1 if e < 
2 (2 - Sz). 

(c) Use Theorem 5.19 to prove that a forward-stable bifurcation of 
positive equilibria from the extinction equilibrium col(O2 , 0) 
occurs at R0 = l if e < 2 (2 - s2). 

(d) Find formulas for the positive equilibria and use them, and the 
Linearization Principle, to show that there is a unique, positive 
equilibrium for all R0 > land that it is stable if e < 2 (2 - s2). 
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(e) UsetheESSMaximumPrincipletoshowthatthetraitu = Oas­
sociated with a positive equilibrium is an ESS if e < 2 (2 - s2). 





Appendix A 

Appendices 

A.I. Jury Conditions for 2 x 2 Matrices 

Let trM = m11 + m22 and det M = m11 m22 - m21 m12 denote the trace 
and the determinant of a 2 x 2 matrix M = [ mij]. Both eigenvalues of 
M satisfy lill < 1 if and only if ltr Ml < 1 + det M < 2 or equivalently 

(A.I) ltr Ml < 1 + detM and detM < 1. 

These inequalities can be viewed geometrically by showing that they 
are satisfied if and only if the point (tr M, detM) lies inside the trian­
gle shown in Figure Al. This so-called trace-determinant condition for 
m = 2 dimensional matrices states that its two eigenvalues lie inside the 
unit complex disk if and only if the point (tr M, det M) lies inside the tri­
angle. If an entry in Mis changed so as to cause the point (tr M, det M) 
to leave the inside of the triangle, then an eigenvalue M will move from 
inside to outside of the unit disk in the complex plane. More specifi­
cally, if the point (tr M, det M) moves across the lower-left side of the 
triangle, then one eigenvalue leaves the unit circle through + 1, whereas 
if it moves across the lower-right side of the triangle, then one eigen­
value leaves the unit circle through -1. On the other hand, if the point 
leaves the triangle through the top of the triangle, then a complex pair 
of eigenvalues leaves the complex unit circle. (If the point leaves the 
triangle through the bottom-corner of the triangle, then both eigenval­
ues of M leave the unit circle: one through + 1 and one through -1. If 
the point leaves the triangle through the left- or right-corner, then both 
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detM 

Figure A.I. The inequalities (A.1) in the Jury stability criteria geo­
metrically place the point ( tr M, det M) inside the displayed triangle. 
Points outside the triangle correspond to instability. 

eigenvalues leave the unit disk at +l or -1, respectively.) Thus, when 
M is the Jacobian evaluated at an equilibrium of a nonlinear equation, 
different types of bifurcations occur as an eigenvalue leaves the triangle 
and the equilibrium destabilizes. Although other technical conditions 
are needed to assure that a bifurcation occurs and to determine whether 
it is forward or backward (or stable or unstable), one expects the follow­
ing: if an eigenvalue leaves the inside of the triangle through the 

(a) top, then a Neimark-Sacker occurs; 

(b) lower-right side, then a period-doubling bifurcation occurs; 

(c) lower-left side, then an equilibrium bifurcation occurs. 

In case (a), an invariant loop is created. In case (b), cycles of pe­
riod 2 are created. In case (c), a tangent (aka blue-sky or saddle-node), 
pitchfork, or transcritical bifurcation of equilibria occurs. 

The Jury conditions (Al) can be equivalently rewritten as the fol­
lowing three conditions, relating to the three sides of the triangle in Fig­
ure Al and the different types of bifurcations associated with them: 

(A2) 
(a) O < 1 - detM; 
(b) O<l+detM+trM; 
(c) O<l+detM-trM. 
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A.2. The Linearization Principle 

In this section, we give a proof of Theorem 1.10. By the Mean Value 
Theorem, 

f (X) - Xe = f (X) - f (Xe) = 8xf (s) (X - Xe) 

for some numbers between X and Xe (i.e., satisfying Is - Xel s Ix - Xel), 

First, suppose 18xf (xe)I < 1. Then 18xf (x)I < 1 for x near Xe since 
axf (x) is continuous. More specifically, if we choose a number er be­
tween 18xf (xe)I and 1 (i.e., a number satisfying 18xf (xe)I < er < 1), 
then there exists an interval of x values, say Ix - Xel s 8* where 8* < 8, 
on which 1axf (x)I s er< 1. 

We begin by addressing the stability of the equilibrium Xe. If the 
initial condition x (0) satisfies 

then 

Ix (1) - Xel = If (x (0)) - f (Xe)I = 18xf Cs1)I Ix (0) - Xel 

for some Sl between Xe and Xo (i.e., satisfying ls1 - Xel S Ix- Xel). It 
follows that 

Ix (1) - Xe I S er Ix (0) - Xe I S 8*. 

This inequality allows us to repeat this same argument using x (2) in 
place of x (1). Thus, for some s2 between Xe and x0 (i.e., satisfying 
ls2 - Xel S Ix - Xel), we have 

Ix (2) - Xel = If (x (1)) - f (Xe)I = 18xf Cs2)I Ix (1) - Xel; 

hence, 

Ix (2) - Xel s cr2 1x (0) - Xol so*. 
For purposes of induction, suppose for at 2: 1 that 

lx(t-1)-Xel scr1- 1 1x(0)-Xel s8*. 

Then, repeating the previous argument, we have 

Ix (t) - Xel = If (x (t - 1)) - f (xe)I = 1axf Cs1)I Ix (t - 1) - Xel 

for some St between Xe and x0 ; hence, 

(A.3) 

By induction inequality, (A.3) holds for all t E Z+. 
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Given any£ > 0, let 6 (£) = min{6*, £}. Then for any initial condition 
satisfying Ix (0) - Xel ::; o (£), the inequality (A.3) holds; hence, 

lx(t)- Xel::; cr1 lx(0)-xel::; 1 · min{6*,£}::; £ 

for all t E Z+. This shows Xe is stable. Finally, we note that (A.3) implies 
lim1---. 00 Ix (t) - Xel = 0 when Ix (0) - Xel ::; 6*. That is to say, the stable 
equilibrium Xe is locally attracting and hence is locally asymptotically 
stable. 

Second, suppose 1axf (Xe)I > 1. Then 1axf (x)I > 1 for X near Xe 

since axf (x) is continuous. More specifically, if we choose a number er 
between 1axf Cxe)I and 1, then there exists an interval of x values, say 
Ix - Xel::; £where£< o, on which 1axf (x)I 2:: er> 1. 

Suppose for purposes of reaching a contradiction that Xe is stable. 
Then there exists a 6 (£) such that Ix (0) - Xel ::; o (£) implies 

(A.4) Ix (t) - Xel ::; £ for all t E Z+. 

However, reasoning analogously as in (a), we inductively conclude that 
Ix (0) - Xel ::; o* implies 

Ix (t) - Xel 2:: cr1 Ix (0) - Xel for all t E Z+. 

For an initial condition x (0) =f- Xe, this contradicts (A.4) for large t, 
specifically for 

t > In ( £ IX ( 0) - Xe 1-1) / ln Cl). 

This contradiction means that the assumption that Xe is stable is false. 

A.3. The Implicit Function Theorem 

Let g E Cq (0 : 0), where O and 0 are open sets in Rn+m = Rn x Rm 

and Rm, respectively. We write g = g(µ,x) forµ E O and x E 0 and 
consider the equation g (µ, x) = Om to be solved for x as a function ofµ. 
We denote the Jacobian of g with respect to x by 

fxg (µ, X) = [ 3Yjgi (µ, X)] . 

Theorem A.I. Assume there exists (µ 0 , x0 ) E Rn+m such that 
g (µ 0 , x0 ) = Om and the Jacobian fxg (µ, x) evaluated at (µ 0 , x0 ) is in­
vertible. Then in a neighborhood N of µ0 , there exists a unique function 
x = g (µ) E Cq (U : 0) such that g (µ 0 ) = x0 and g(µ, g (µ))=Om. 
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The derivatives of s (µ) atµ E N can be calculated by implicit dif­
ferentiation of g (µ, s(µ)) =Om.For example, the first order derivatives 
are 

A.4. Mean Trait Dynamics 

In this section, we follow [129] to give a derivation of the trait equation 
(5.6). Suppose a population x has mean phenotypic trait u and contains 
k subpopulations Xj with mean traits uj EA: 

k 
X='°'. X1·. LJ J=l 

The frequency of phenotype j is 

Xj 
Qj=-, 

X 

and the population mean is, by definition, 

The differences 

t:.uj = Uj - U 

measure the variability within the population. Note that 

k 

u = IJ=l qJ (u + t:.uj) 

k k 
= IJ=l qju + IJ=l qjt:.uj 

k 

= u + Ij=l qjt:.uJ, 

which implies 

(A.6) 

We want to determine how u changes due to the population density 
dynamics. It is assumed that the population and each subpopulation 
changes according to the equation (5.5). It follows that u changes in time 
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because the frequencies qj change in time, while uj remains unchanged. 
Thus, 

k 
u (t + 1) = I j=l Qj (t + 1) Uj 

k Xj (t + 1) 
- """' -----,------,-u - L.Jj=l X(t + 1) j 

k r(x(t),v,u(t))lv=uj(t)Xj (t) 

= Ij=l r(x(t),v,u(t))lv=u(t)x(t) uj, 

and 

k r (x (t), V, u (t))lv=uj(t) Xj (t) 
u(t + l)-u(t) = ""°' ~~~~~--~u· 

Lij=l r(x(t),v,u(t))lv=u(t)x(t) 1 

k -""°'. Q·(t)U· LJJ=l J J 

= k (r(x(t),v,u(t))lv=uj(t)_l). t U· 

Ij=l r(x(t) v u(t))I Q; () 1 
' ' v=u(t) 

or 

u(t + 1)- u(t) 

~;=l ( r (x (t), V, u (t))lv=uj(t) -r (x (t), V, u (t))lv=u(t)) Qj (t) uj 
=-----------'-------------

r (x (t), V, U (t))lv=u(t) 

To obtain the so-called first order trait dynamics, we use the first order 
Taylor approximation 

to obtain 

(A.7) 
Ov r (x (t), V, U (t))lv=u(t) 

u(t+l)=u(t)+B(t) ( () ())I , 
r X t , V, U t v=u(t) 



A.4. Mean Trait Dynamics 

where, by virtue of (A.6), 
k 

e (t) = L j=l flujqj (t) u j 

k 
= Lj=l flujqj (t) (u + fluj) 

k k 2 

= u Lj=l flujqj (t) + Lj=l qj (t) (fluj) 

k 2 

= Lj=l qj(t)(fluj) 

is the variance of the the phenotypes from the mean u. 

261 

Suppose we add the assumption that the phenotypes in the popu­
lation are symmetrically distributed around the mean u (i.e., for each j, 
there is an i such that flujqj (t) = -fluiqi (t)) [129]. In fact, according 
to Lande [96], "most commonly, phenotypic characters have a normal 
distribution" (or can be transformed to a normal distribution). Then 

k 2 
(A.8) Lj=l flujqJ (t) (fluJ) = O. 

The difference 
k 2 

8(t + l)-8(t) = Lj=l (qj (t + 1)-qj (t))(fluj) 

equals 

k (r(x(t),v,u(t))lv=uj(t)Xj(t) ) 2 

Lj=l r(x(t),v,u(t))lv=u(t)x(t) -qJ(t) (fluJ)' 

which we can rewrite as 

~;=l ( r (x (t), V, u (t))lv=uj(t) - r (x (t), V, u (t))lv=u(t)) q1 (t) (fluJ2 

r (x (t), V, U (t))lv=u(t) 

To first-order this term, 

avr(x(t),v,u(t))lv=u(t) k 2 

r(x(t) v u(t))I Lj=lfluJqj(t)(fluj) =0 
' ' v=u(t) 

by (A.8). Thus, using first order trait dynamics, we have that e (t + 1) = 
e (t) (i.e., the variance remains constant in time), and the trait equation 
(A.7) becomes (5.6). 
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